scholarly journals Effect of Molecular Weight and Nanoarchitecture of Chitosan and Polycaprolactone Electrospun Membranes on Physicochemical and Hemocompatible Properties for Possible Wound Dressing

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4320
Author(s):  
Maria Oviedo ◽  
Yuliet Montoya ◽  
Wilson Agudelo ◽  
Alejandra García-García ◽  
John Bustamante

Tissue engineering has focused on the development of biomaterials that emulate the native extracellular matrix. Therefore, the purpose of this research was oriented to the development of nanofibrillar bilayer membranes composed of polycaprolactone with low and medium molecular weight chitosan, evaluating their physicochemical and biological properties. Two-bilayer membranes were developed by an electrospinning technique considering the effect of chitosan molecular weight and parameter changes in the technique. Subsequently, the membranes were evaluated by scanning electron microscopy, Fourier transform spectroscopy, stress tests, permeability, contact angle, hemolysis evaluation, and an MTT test. From the results, it was found that changes in the electrospinning parameters and the molecular weight of chitosan influence the formation, fiber orientation, and nanoarchitecture of the membranes. Likewise, it was evidenced that a higher molecular weight of chitosan in the bilayer membranes increases the stiffness and favors polar anchor points. This increased Young’s modulus, wettability, and permeability, which, in turn, influenced the reduction in the percentage of cell viability and hemolysis. It is concluded that the development of biomimetic bilayer nanofibrillar membranes modulate the physicochemical properties and improve the hemolytic behavior so they can be used as a hemocompatible biomaterial.

2018 ◽  
Vol 33 (5) ◽  
pp. 461-478 ◽  
Author(s):  
Hajer Radhouani ◽  
Cristiana Gonçalves ◽  
Fátima R Maia ◽  
Joaquim M Oliveira ◽  
Rui L Reis

Kefiran, an exopolysaccharide produced by lactic acid bacteria, has received a great interest due to a variety of health claims. In this study, we aim to investigate the physicochemical and biological properties of Kefiran polysaccharide extracted from Portuguese kefir grains. The kefir growth rate was about 56% (w/w) at room temperature and the kefir pH after 24 h was about 4.6. The obtained yield of Kefiran polysaccharide extracted from the kefir grains was about 4.26% (w/w). The Kefiran structural features were showed in the 1H nuclear magnetic resonance spectrum. The bands observed in the infrared spectrum confirmed that the Kefiran had a β-configuration; and the X-ray photoelectron spectroscopy analysis confirmed the structure and composition of Kefiran and revealed a C/O atomic ratio of 1.46. Moreover, Kefiran showed an average molecular weight (Mw) of 534 kDa and a number-average molecular weight (Mn) of 357 kDa. Regarding the rheological data obtained, Kefiran showed an interesting adhesive performance accompanied by a pseudoplastic behavior, and the extrusion force of Kefiran was 1 N. Furthermore, Kefiran exhibited a higher resistance to hyaluronidase degradation than hyaluronic acid. Finally, Kefiran showed a lack of cytotoxic response through its ability to support metabolic activity and proliferation of L929 cells, and had no effect on these cells’ morphology. Our research suggested that Kefiran polymer has attractive and interesting properties for a wide range of biomedical applications, such as tissue engineering and regenerative medicine.


2020 ◽  
Vol 179 (4) ◽  
pp. 109-115
Author(s):  
T. A. Kuznetsova ◽  
N. N. Besednova ◽  
V. V. Usov ◽  
B. G. Andryukov

The review presents the characteristics of modern biocompatible and biodegradable wound dressings on the basis of seaweed polysaccharides (carrageenans of red algae, fucoidans and alginates of brown algae, ulvans of green algae) and notes the key physicochemical and biological properties that are important for constructing wounds dressings. There are information on various types of wound dressings and results of experimental and clinical tests of dressings in the treatment of wounds of various origins. Particular attention is paid to hydrogel dressings, since hydrogels meet the basic requirements for an ideal wound dressing, and many marine polysaccharides are able to form hydrogels.


2019 ◽  
Vol 215 ◽  
pp. 160-169 ◽  
Author(s):  
Maira Jiménez-Sánchez ◽  
Rebeca Pérez-Morales ◽  
Francisco M. Goycoolea ◽  
Monika Mueller ◽  
Werner Praznik ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5920
Author(s):  
Olga Stanishevskaya ◽  
Yulia Silyukova ◽  
Nikolai Pleshanov ◽  
Anton Kurochkin

The combination of saccharides in the composition of a cryopreservation medium may represent a promising method for the preservation of the reproductive cells of male birds. In the current study, cryoprotective media with a combined composition of mono- and di-saccharides were developed. The degree of penetration of reducing saccharide molecules (maltose—Mal20 medium) and non-reducing disaccharide molecules (trehalose—Treh20 medium) from the cryoprotective medium into the cytosol of rooster spermatozoa was studied. LCM control media without disaccharides were used as the control. The number of maltose molecules penetrating from the outside into the cytosol of the spermatozoon was 1.06 × 104, and the number of trehalose molecules was 3.98 × 104. Using a combination of maltose and fructose, the progressive motility of frozen/thawed semen and the fertility rates of eggs were significantly higher ((p < 0.05) 40.2% and 68.5%, respectively) than when using a combination of trehalose and fructose in a cryoprotective diluent (33.4% and 62.4%, respectively). A higher rate of chromatin integrity at the level of 92.4% was obtained when using Treh20 versus 74.5% Mal20 (p < 0.05). Maltose positively affected the preservation of frozen/thawed sperm in the genital tract of hens. On the seventh day from the last insemination when using Mal20, the fertilization of eggs was 42.6% and only 27.3% when using Treh20. Despite the same molecular weight, maltose and trehalose have different physicochemical and biological properties that determine their function and effectiveness as components of cryoprotective media.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2322
Author(s):  
Ding-Tao Wu ◽  
Yuan He ◽  
Meng-Xi Fu ◽  
Ren-You Gan ◽  
Yi-Chen Hu ◽  
...  

The present study aimed to explore the impacts of in vitro simulated saliva-gastrointestinal digestion on physicochemical and biological properties of the polyphenolic-protein-polysaccharide ternary complex (PPP) extracted from Hovenia dulcis. The results revealed that the in vitro digestion did remarkably affect physicochemical properties of PPP, such as content of reducing sugar release, content of bound polyphenolics, and molecular weight distribution, as well as ratios of compositional monosaccharides and amino acids. In particular, the content of bound polyphenolics notably decreased from 281.93 ± 2.36 to 54.89 ± 0.42 mg GAE/g, which might be the major reason for the reduction of bioactivities of PPP after in vitro digestion. Molecular weight of PPP also remarkably reduced, which might be attributed to the destruction of glycosidic linkages and the disruption of aggregates. Moreover, although biological activities of PPP obviously decreased after in vitro digestion, the digested PPP (PPP-I) also exhibited remarkable in vitro antioxidant and antiglycation activities, as well as in vitro inhibitory effects against α-glucosidase. These findings can help to well understand the digestive behavior of PPP extracted from H. dulcis, and provide valuable and scientific supports for the development of PPP in the industrial fields of functional food and medicine.


2019 ◽  
Vol 25 (11) ◽  
pp. 1187-1199 ◽  
Author(s):  
Soukaina Bouissil ◽  
Guillaume Pierre ◽  
Zainab El Alaoui-Talibi ◽  
Philippe Michaud ◽  
C. El Modafar ◽  
...  

Background: Recently, researchers have given more and more consideration to natural polysaccharides thanks to their huge properties such as stability, biodegradability and biocompatibility for food and therapeutics applications. Methods: a number of enzymatic and chemical processes were performed to generate bioactive molecules, such as low molecular weight fractions and oligosaccharides derivatives from algal polysaccharides. Results: These considerable characteristics allow algal polysaccharides and their derivatives such as low molecular weight polymers and oligosaccharides structures to have great potential to be used in lots of domains, such as pharmaceutics and agriculture etc. Conclusion: The present review describes the mains polysaccharides structures from Algae and focuses on the currents agricultural (fertilizer, bio-elicitor, stimulators, signaling molecules and activators) and pharmaceutical (wound dressing, tissues engineering and drugs delivery) applications by using polysaccharides and/or their oligosaccharides derivatives obtained by chemical, physical and enzymatic processes.


Sign in / Sign up

Export Citation Format

Share Document