scholarly journals Coal Anisotropic Sorption and Permeability: An Experimental Study

Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 104 ◽  
Author(s):  
Yulong Chen ◽  
Xuelong Li ◽  
Bo Li

Knowledge of the bedding plane properties of coal seams is essential for the coalbed gas production because of their great influence on the inner flow characteristics and sorption features of gas and water. In this study, an experimental study on the anisotropic gas adsorption–desorption and permeability of coal is presented. The results show that during the adsorption–desorption process, an increase in the bedding plane angle of the specimen expands the length and area of the contact surface, thereby increasing the speed and quantity of adsorption and desorption. With an increase in the bedding angle, the number of pores and cracks was found to increase together with the volumetric strain. The evolution of permeability of coal heavily depended on stress–strain stages. The permeability decreased with the increase of stress at the initial compaction and elastic deformation stages, while it increased with the increase of stress at the stages of strain-hardening, softening and residual strength. Initial permeability increased with increasing bedding angle.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4927 ◽  
Author(s):  
Zhigao Peng ◽  
Shenggui Liu ◽  
Yingjun Li ◽  
Zongwei Deng ◽  
Haoxiong Feng

The diffusion–adsorption behavior of methane in coal is an important factor that both affecting the decay rate of gas production and the total gas production capacity. In this paper, we established a pore-scale Lattice Boltzmann (LB) model coupled with fluid flow, gas diffusion, and gas adsorption–desorption in the bi-dispersed porous media of coalbed methane. The Knudsen diffusion and dynamic adsorption–desorption of gas in clusters of coal particles were considered. Firstly, the model was verified by two classical cases. Then, three dimensionless numbers, Re, Pe, and Da, were adopted to discuss the impact of fluid velocity, gas diffusivity, and adsorption/desorption rate on the gas flow–diffusion–adsorption process. The effect of the gas adsorption layer in micropores on the diffusion–adsorption–desorption process was considered, and a Langmuir isotherm adsorption theory-based method was developed to obtain the dynamic diffusion coefficient, which can capture the intermediate process during adsorption/desorption reaches equilibrium. The pore-scale bi-disperse porous media of coal matrix was generated based on the RCP algorithm, and the characteristics of gas diffusion and adsorption in the coal matrix with different Pe, Da, and pore size distribution were discussed. The conclusions were as follows: (1) the influence of fluid velocity on the diffusion–adsorption process of coalbed methane at the pore-scale is very small and can be ignored; the magnitude of the gas diffusivity in macropores affects the spread range of the global gas diffusion and the process of adsorption and determines the position where adsorption takes place preferentially. (2) A larger Fickian diffusion coefficient or greater adsorption constant can effectively enhance the adsorption rate, and the trend of gas concentration- adsorption is closer to the Langmuir isotherm adsorption curve. (3) The gas diffusion–adsorption–desorption process is affected by the adsorption properties of coal: the greater the pL or Vm, the slower the global gas diffusivity decay. (4) The effect of the gas molecular adsorption layer has a great impact on the kinetic process of gas diffusion–adsorption–desorption. Coal is usually tight and has low permeability, so it is difficult to ensure that the gas diffusion and adsorption are sufficient, the direct use of a static isotherm adsorption equation may be incorrect.


Fuel ◽  
2018 ◽  
Vol 232 ◽  
pp. 495-505 ◽  
Author(s):  
Zhenyang Wang ◽  
Yuanping Cheng ◽  
Kaizhong Zhang ◽  
Congmeng Hao ◽  
Liang Wang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Zengchao Feng ◽  
Chen Wang ◽  
Dong Dong ◽  
Dong Zhao ◽  
Dong Zhou

To study the influence of gas adsorption-desorption on the resistivity of coal, the resistivity changes in conditions of continuous adsorption/desorption and isovolumetric adsorption/desorption were tested by high-precision resistance measurement, and the relationship between coal resistivity and gas content was investigated. The results show that gas adsorption/desorption has obvious effects on the resistivity of coal. Similar behavior was observed both in continuous adsorption/desorption and in isovolumetric adsorption/desorption experiments. The coal resistivity decreased gradually at the very beginning and then tended to stabilize as the gas adsorption capacity increased; in the process of gas desorption, the resistivity demonstrated a linear relationship with gas content. When comparing resistivities for the different adsorption modes, it was found that, for the same gas content in each mode, the resistivity change in the isovolumetric adsorption experiment was more obvious than in the continuous adsorption experiment. Also, the coal resistivity in the isovolumetric experiment differed further from the original figure when the desorption ended. The results are significant for predicting gas content in the coal mining process.


2009 ◽  
Vol 6 (2) ◽  
pp. 302-308
Author(s):  
Baghdad Science Journal

Gas adsorption phenomenon on solid surface has been used as a mean in separation and purification of gas mixture depending on the difference in tendencies of each component in the gas mixture to be adsorbed on the solid surface according to its behaviour. This work concerns to study the possibilities to separate the gas mixture using adsorption-desorption phenomenon on activated carbon. The experimental results exhibit good separation factor at temperature of -40 .


2021 ◽  
Vol 108 ◽  
pp. 106377
Author(s):  
Mohammed Faheem ◽  
Aqib Khan ◽  
Rakesh Kumar ◽  
Sher Afghan Khan ◽  
Waqar Asrar ◽  
...  

2019 ◽  
Vol 125 ◽  
pp. 92-101 ◽  
Author(s):  
Shuaiwei Gu ◽  
Yuxing Li ◽  
Lin Teng ◽  
Cailin Wang ◽  
Qihui Hu ◽  
...  

2016 ◽  
Vol 14 (0) ◽  
pp. 78-82 ◽  
Author(s):  
Filchito Renee Bagsican ◽  
Iwao Kawayama ◽  
Hironaru Murakami ◽  
Masayoshi Tonouchi ◽  
Andrew Winchester ◽  
...  

2017 ◽  
Vol 100 ◽  
pp. 283-291 ◽  
Author(s):  
Mingjun Wang ◽  
Di Liu ◽  
Yan Xiang ◽  
Shijie Cui ◽  
G.H. Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document