scholarly journals Artificial Neural Networks Approach for a Multi-Objective Cavitation Optimization Design in a Double-Suction Centrifugal Pump

Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 246 ◽  
Author(s):  
Wang ◽  
Osman ◽  
Pei ◽  
Gan ◽  
Yin

Double-suction centrifugal pumps are widely used in industrial and agricultural applications since their flow rate is twice that of single-suction pumps with the same impeller diameter. They usually run for longer, which makes them susceptible to cavitation, putting the downstream components at risk. A fast approach to predicting the Net Positive Suction Head required was applied to perform a multi-objective optimization on the double-suction centrifugal pump. An L32 (84) orthogonal array was designed to evaluate 8 geometrical parameters at 4 levels each. A two-layer feedforward neural network and genetic algorithm was applied to solve the multi-objective problem into pareto solutions. The results were validated by numerical simulation and compared to the original design. The suction performance was improved by 7.26%, 3.9%, 4.5% and 3.8% at flow conditions 0.6Qd, 0.8Qd, 1.0Qd and 1.2Qd respectively. The efficiency increased by 1.53% 1.0Qd and 1.1% at 0.8Qd. The streamline on the blade surface was improved and the vapor volume fraction of the optimized impeller was much smaller than that of the original impeller. This study established a fast approach to cavitation optimization and a parametric database for both hub and shroud blade angles for double suction centrifugal pump optimization design.

Author(s):  
Jianping Yuan ◽  
Rong Jin ◽  
Shujuan Li ◽  
Longyan Wang ◽  
Aixiang Ge

In order to research the influence laws of the main geometrical parameters of auxiliary impeller and different operation conditions on the centrifugal pump with an auxiliary impeller, which aimed to act as dynamic seal, the orthogonal experiment was designed with four factors and three values. The factors respectively are auxiliary impeller axial clearance, blade width, outlet diameter and blade number. With simulation by Fluent, major and minor factors were investigated which influence the performance of the centrifugal pump with an auxiliary impeller. The cases with optimization sealing pressure value and optimization efficiency were obtained and it was proved by the experimental results. Then, two optimization cases and the original case were simulated and analyzed. The research results show that the major factor of auxiliary impellers for the pump efficiency is the outlet diameter. For sealing pressure head of auxiliary impellers, the major factor is the outlet diameter of auxiliary impeller and the axial clearance and blade number of the auxiliary impeller are secondary important factors. For the optimization of centrifugal pumps with an auxiliary impeller, numerical orthogonal tests can replace actual orthogonal tests.


Author(s):  
Ran Tao ◽  
Ruofu Xiao ◽  
Di Zhu ◽  
Fujun Wang

Double suction centrifugal pumps are widely used for water supplying system. In this study, the original design of a double centrifugal pump lacked sufficient head at the design flow rate condition. Therefore, the most important objective was to optimize the design to improve the head. A strategy inspired by “liquid–gas cavitation process” is innovatively used for intelligent global search of better pump designs with both higher head and wider-higher efficiency. This strategy has advantages including flexibility, parallelism, and feasibility on overstepping the local-best. The computational fluid dynamics and artificial neural network are used. It helps this optimization to find unknown points in the non-linear and multi-dimensional searching space, and accelerate the optimization process. Candidates were found after search, and the best one was chosen using Pareto principle. Experimental and numerical studies verify that the optimized impeller meets the requirement of head. The efficiency is also significantly improved with higher best efficiency and wider high efficiency range than original design. The critical cavitation is also improved at design condition. This study provides an effective strategy and a good solution for multi-objective optimization of double suction centrifugal pumps. Moreover, this study provides references for the combination of optimizations with artificial intelligence especially in the pump’s design.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 919
Author(s):  
Jia Li ◽  
Xin Wang ◽  
Yue Wang ◽  
Wancheng Wang ◽  
Baibing Chen ◽  
...  

Aero-fuel centrifugal pumps are important power plants in aero-engines. Unlike most of the existing centrifugal pumps, a combination impeller is integrated with the pump to improve performance. First, the critical geometrical parameters of the combination impeller and volute are given. Then, the effects of the combination impeller on the flow characteristics of the impeller and volute are clarified by comparing simulation results with that of the conventional impeller, where the effectiveness of the selected numerical method is validated by an acceptable agreement between simulation and experiment. Finally, the experiment is set to test the external performance of the studied pump. A significant feature of this study is that the flow characteristics are significantly ameliorated by reducing the flow losses that emerged in the impeller inlet, impeller outlet, and volute tongue. Correspondingly, the head and efficiency of a combination impeller are higher with comparison to a conventional impeller. Consequently, it is a promising approach in ameliorating the flow field and improving external performance by applying a combination impeller to an aero-fuel centrifugal pump.


Author(s):  
Shunya Takao ◽  
Kentarou Hayashi ◽  
Masahiro Miyabe

Abstract In order to improve suction performance, centrifugal pumps with an inducer are used for rocket pumps, liquid gas transport such as LNG, and general-purpose pumps. Since a higher suction performance than conventional pump is required, a splitter blade that consists of a long blade and a short blade is sometimes adopted. However, the design becomes more difficult due to the increased number of parameters. The stable operation over a wide flow rate range are required in the general-purpose pumps. Therefore it is necessary to design them so that unstable flow phenomena such as surges do not occur. However, the design method to avoid them is not well understood yet. In this study, we focused on the splitter blade impeller in a general-purpose low-speed centrifugal pump with an inducer. Six parameters such as leading edge position and trailing edge position of the short blade for both hub-side and tip-side were set as design ones. A multi-objective optimization method using a commercial software was applied to improve suction performance while maintaining high efficiency. Then obtained optimal shape were analyzed by CFD calculation and extracted the feature. Furthermore, optimized impellers were manufactured and confirmed the performance over a wide flow rate range by experiments. In addition, a optimizing design method that improves pump performance at lower cost was studied.


2010 ◽  
Vol 29-32 ◽  
pp. 1003-1007
Author(s):  
Ming Wei Hou

To make the high efficiency and energy-saving centrifugal pump, using multi-objective optimization design to make hydraulic design of the 500SM35 centrifugal pumps, using CFD technology to simulate the three-dimensional turbulence flow in pump, also make performance experiment and cavitation experiment of the 500SM35 centrifugal pump that have been self-developed. Experimental studies have shown that: the 500SM35 centrifugal pump’s prototype performance parameters all beyond design specification.


1943 ◽  
Vol 150 (1) ◽  
pp. 121-134 ◽  
Author(s):  
N. Tetlow

During the last thirty years there has been a manifold increase in the demand for centrifugal pumps for oilfield and oil refinery service, an increase in which British engineers have played a worthy part. With traditional British reticence little has been said of the achievements of British oil companies and British pump manufacturers in this field of activity, and the author has written this paper with the object of correcting the omission. In the field of oil transportation over long distances, for instance, the influence of British practice is to be seen in many oilfields throughout the world. Within the refinery considerable strides have been made, particularly in solving the difficult problem of handling unstable hydrocarbon liquids under high suction pressures. Hot oil pump practice is now more or less established, and in this development the greater share of credit is due to American pump manufacturers. These developments are dealt with at some length in the appropriate section of the paper. Another point which calls for comment here is the introduction of a new term, for the characteristic of flow into the impeller eye, which is used in section 3 of the paper. When dealing with hydrocarbon liquids under saturation pressure and temperature conditions, the so-called “suction performance” of a centrifugal pump becomes extremely important. As a description of this most important characteristic of a pump the use of the phrase “suction performance” is misleading, and it has led to much confusion of thought. An attempt has been made to reduce the possibility of further confusion by coining a new phrase based on the analogy of similar characteristics encountered in electrical engineering. Throughout the paper, therefore, the pump characteristic relating to flow into the impeller eye has been described as the characteristic of “flow inductance”. The paper would not be complete without an attempt to assess the future trend. There will probably be a much greater tendency towards electrification of main-line pumping plant. A further increase in operating temperatures and pressures will, no doubt, lead to many fundamental changes in the design of pumping plant for use inside the refinery. As an example, it is suggested that for some difficult duties it may be necessary to adopt pump designs in which stuffing boxes are avoided altogether. Finally, it is probable that refinery technologists will tend more and more to adopt chemical processes and chemical engineering practice, so introducing new problems for the pump designer.


Author(s):  
XiaoMei Guo ◽  
ZuChao Zhu ◽  
BaoLing Cui ◽  
Yi Li

AbstractDesigning inducer is one of the effective ways to improve the suction performance of high-speed centrifugal pumps. The operation condition including rotational speeds can affect the internal flow and external performance of high-speed centrifugal pumps with an inducer. In order to clarify the rotating cavitation performance of a centrifugal pump with a splitter-bladed inducer under different rotational speed, a centrifugal pump with a splitter-bladed inducer is investigated in the work. By using Rayleigh–Plesset equations and Mixture model, the cavitation flow of centrifugal pump is numerically simulated, as well as the external performance experimental test is carried out. It is found that the cavitation area increases with the rotational speeds. The location of the passage where cavitation is easy to appear is explored. Asymmetric cavitation behavior is observed. That, the trail of the inducer is easy to take cavitation when the rotational speed is increased to a degree, is also observed. The trend of


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yu Zhang ◽  
Sanbao Hu ◽  
Yunqing Zhang ◽  
Liping Chen

This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller.


Author(s):  
Adel Pourtaghi ◽  
Heidar Pouladi

A centrifugal pump is a pump which uses a rotating impeller for increasing the pressure of a fluid. Fluid flows to pump from the impellers hole and get accelerated by it and flows toward the volute fast from where enters to the outlet of the pump. Having enough knowledge in the field of geometrical parameters has a great effect on improving the designing and making this kind of pumps. The present study intends to take a small step in this field by evaluation of the effect of mentioned parameters and simulation of fluid current in inside the pumps. For reaching to this goal different number of blades in modelled in impellers and the performance of pump in simulated in Ansys CFX software and finally the results of CFD studies are presented as charts and curves.


Author(s):  
Y P Ju ◽  
C H Zhang

Modern aerodynamic optimization design methods for the industrial axial compressor cascade mainly aim at improving both design point and off-design point performance. In this study, a multi-point and multi-objective optimization design method is established for the cascade, particularly aiming at widening the operating range while maintaining good performance at the acceptable expense of computational load. The design objectives are to maximize the static pressure ratio and minimize the total pressure loss coefficient at the design point, and to maximize the operating range for the positive and negative incidences. To alleviate the computational load, a design of experiment (DOE)-based GA–BP-ANN model is constructed to rapidly approximate the cascade aerodynamic performance in the optimization process. The artificial neural network (ANN) is trained by the genetic algorithm (GA) technique and back propagation (BP) algorithm, where the training cascades are sampled by the DOE method and analysed by the computational fluid dynamics method. The multi-objective genetic algorithm is used to search for a series of Pareto-optimum solutions, from which an optimal cascade is found out whose objectives are all better than (ABT) those of the original design. The ABT cascade is characterized by the lower camber and higher turning angle, leading to better aerodynamic performance in a widened operating range. Compared with the original design, the ABT cascade decreases the total pressure loss coefficient by 1.54 per cent, 23.4 per cent, and 7.87 per cent at the incidences of 5°, −9°, and 13°, respectively. The established optimization design method can be extended to the three-dimensional aerodynamic design of axial compressor blade.


Sign in / Sign up

Export Citation Format

Share Document