scholarly journals Preparation and Molecular Dynamics Simulation of RDX/MUF Nanocomposite Energetic Microspheres with Reduced Sensitivity

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 692
Author(s):  
Jia ◽  
Hu ◽  
Xu ◽  
Liu ◽  
Ma ◽  
...  

In order to improve the general problem of irregular coating morphology and low mechanical strength of the coating layer in existing coating desensitization technology, nano-cyclotrimethylene trinitramine/melamine-urea-formaldehyde (RDX/MUF) composite energetic microspheres were prepared by an improved emulsion polymerization, taking the MUF as the binder and RDX as the main explosive. In order to judge whether RDX/MUF possessed good stability, the combination of differential scanning calorimetry (DSC) and molecular dynamics (MD) simulation was used to determine the level of binding binding energy between urea-formaldehyde resin binder (UF) and RDX. In addition, to investigate the optimal reaction temperature for the preparation of MUF/RDX, the binding energy between UF and RDX at different temperatures was simulated. And then the morphology and thermal properties of the as-prepared composite energetic microspheres were analyzed by scanning electron microscopy (SEM) and DSC, the impact sensitivity and friction sensitivity of the resultant samples were tested as well. Moreover, RDX/MUF with the same MUF content was prepared by physical mixing for comparative analysis. MD simulation demonstrated that UF and RDX possessed good binding ability at 298 K. The DSC method indicatec that UF and RDX had good compatibility, and the comprehensive performance of RDX after coating was not significantly deteriorated; The optimal binding temperature between UF and RDX was 60~70 °C which is consistent with the experimental results. The experimental results showed that the optimum process conditions for the preparation of RDX/MUF could be listed as follows: the temperature for preparing RDX/MUF composite energetic microspheres by the improved emulsion polymerization was 70 °C the optimal pH value of the urea-formaldehyde resin prepolymer solution was 3, and the optimal melamine-urea molar ratio was 0.4.

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4054
Author(s):  
Xianfeng Wang ◽  
Wei Xie ◽  
Taoran Li ◽  
Jun Ren ◽  
Jihua Zhu ◽  
...  

Microcapsule based self-healing concrete can automatically repair damage and improve the durability of concrete structures, the performance of which depends on the binding behavior between the microcapsule wall and cement matrix. However, conventional experimental methods could not provide detailed information on a microscopic level. In this paper, through molecular dynamics simulation, three composite models of Tobermorite (Tobermorite 9 Å, Tobermorite 11 Å, Tobermorite 14 Å), a mineral similar to Calcium-Silicate–Hydrate (C–S–H) gel, with the linear urea–formaldehyde (UF), the shell of the microcapsule, were established to investigate the mechanical properties and interface binding behaviour of the Tobermorite/UF composite. The results showed that the Young’s modulus, shear modulus and bulk modulus of Tobermorite/UF were lower than that of ‘pure’ Tobermorite, whereas the tensile strength and failure strain of Tobermorite/UF were higher than that of ‘pure’ Tobermorite. Moreover, through radial distribution function (RDF) analysis, the connection between Tobermorite and UF found a strong interaction between Ca, N, and O, whereas Si from Tobermorite and N from UF did not contribute to the interface binding strength. Finally, high binding energy between the Tobermorite and UF was observed. The research results should provide insights into the interface behavior between the microcapsule wall and the cement matrix.


2012 ◽  
Vol 621 ◽  
pp. 79-82
Author(s):  
Gui Hua Chen ◽  
Jian Han ◽  
Xiao Huan Zhang

This study aimed at exploring a producing method of urea-formaldehyde resin that contained low free formaldehyde. Effects of the pH value of addition stage, the pH value and the temperature of polycondensation stage on the properties of the resin were analyzed. The experimental results showed that controlling the pH value of addition stage to 7.5-8.0, regulating the pH value of polycondensation stage to 4.8-5.1, and keeping the temperature of polycondensation stage to 88-92°C, a low toxic urea-formaldehyde resin adhesive was obtained which contained free formaldehyde 0.08%. Using this resin adhesive, the bonding strength of the plywood reached 1.7MPa, formaldehyde emission of the plywood was 0.7mg/l, reaching the grade E1.


Author(s):  
Shanfeng Xu ◽  
Sanshan Xia ◽  
Yuzhu Chen ◽  
Hui Xiao ◽  
Maoyu Yi ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (40) ◽  
pp. 25010-25017
Author(s):  
Li Lu ◽  
Yan Wang ◽  
Tianhua Li ◽  
Supeng Wang ◽  
Shoulu Yang ◽  
...  

Reactions between CaCO3 and CH2O2 during polycondensation of UF resin produce Ca2+. Ionic bond complexation binds Ca2+ with UF resin. The UF resin crystalline percentage decreases from 26.86% to 22.71%. IB strength of resin bonded fiberboard increases from 0.75 to 0.94 MPa.


2020 ◽  
Vol 18 (1) ◽  
pp. 69-76
Author(s):  
Qiang Wang ◽  
Qizhong Tang ◽  
Sen Tian

AbstractMolecular dynamics (MD) analysis of methane hydrate is important for the application of methane hydrate technology. This study investigated the microstructure changes of sI methane hydrate and the laws of stress–strain evolution under the condition of compression and tension by using MD simulation. This study further explored the mechanical property and stability of sI methane hydrate under different stress states. Results showed that tensile and compressive failures produced an obvious size effect under a certain condition. At low temperature and high pressure, most of the clathrate hydrate maintained a stable structure in the tensile fracture process, during which only a small amount of unstable methane broke the structure, thereby, presenting a free-motion state. The methane hydrate cracked when the system reached the maximum stress in the loading process, in which the maximum compressive stress is larger than the tensile stress under the same experimental condition. This study provides a basis for understanding the microscopic stress characteristics of methane hydrate.


2018 ◽  
Vol 136 (17) ◽  
pp. 47389 ◽  
Author(s):  
Ana Maria Ferreira ◽  
João Pereira ◽  
Margarida Almeida ◽  
João Ferra ◽  
Nádia Paiva ◽  
...  

2013 ◽  
Vol 815 ◽  
pp. 367-370 ◽  
Author(s):  
Xiao Qiu Song ◽  
Yue Xia Li ◽  
Jing Wen Wang

Hexadecane microcapsule phase change materials were prepared by the in-situ polymerization method using hexadecane as core materials, urea-formaldehyde resin and urea-formaldehyde resin modified with melamine as shell materials respectively. Effect of melamine on the properties of microcapsules was studied by FTIR, biomicroscopy (UBM), TGA and HPLC. The influences of system concentration, agitation speed and mass ratio of wall to core were also investigated. The results indicated that hexadecane was successfully coated by the two types of shell materials. The addition of melamine into the urea-formaldehyde resin microcapsule reduced microcapsule particle size and microencapsulation efficiency. The influences of factors such as system concentration, agitation speed and mass ratio of wall to core to different wall materials microcapsules presented different variety trends of the microcapsule particle size.


Sign in / Sign up

Export Citation Format

Share Document