scholarly journals Sustainable Rural Electrification Through Solar PV DC Microgrids—An Architecture-Based Assessment

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1417
Author(s):  
Mashood Nasir ◽  
Saqib Iqbal ◽  
Hassan A. Khan ◽  
Juan C. Vasquez ◽  
Josep M. Guerrero

Solar photovoltaic (PV) direct current (DC) microgrids have gained significant popularity during the last decade for low cost and sustainable rural electrification. Various system architectures have been practically deployed, however, their assessment concerning system sizing, losses, and operational efficiency is not readily available in the literature. Therefore, in this research work, a mathematical framework for the comparative analysis of various architectures of solar photovoltaic-based DC microgrids for rural applications is presented. The compared architectures mainly include (a) central generation and central storage architecture, (b) central generation and distributed storage architecture, (c) distributed generation and central storage architecture, and (d) distributed generation and distributed storage architecture. Each architecture is evaluated for losses, including distribution losses and power electronic conversion losses, for typical power delivery from source end to the load end in the custom village settings. Newton–Raphson method modified for DC power flow was used for distribution loss analysis, while power electronic converter loss modeling along with the Matlab curve-fitting tool was used for the evaluation of power electronic losses. Based upon the loss analysis, a framework for DC microgrid components (PV and battery) sizing was presented and also applied to the various architectures under consideration. The case study results show that distributed generation and distributed storage architecture with typical usage diversity of 40% is the most feasible architecture from both system sizing and operational cost perspectives and is 13% more efficient from central generation and central storage architecture for a typical village of 40 houses. The presented framework and the analysis results will be useful in selecting an optimal DC microgrid architecture for future rural electrification implementations.

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 938 ◽  
Author(s):  
Nishant Narayan ◽  
Ali Chamseddine ◽  
Victor Vega-Garita ◽  
Zian Qin ◽  
Jelena Popovic-Gerber ◽  
...  

Off-grid solar home systems (SHSs) currently constitute a major source of providing basic electricity needs in un(der)-electrified regions of the world, with around 73 million households having benefited from off-grid solar solutions by 2017. However, in and of itself, state-of-the-art SHSs can only provide electricity access with adequate power supply availability up to tier 2, and to some extent, tier 3 levels of the Multi-tier Framework (MTF) for measuring household electricity access. When considering system metrics of loss of load probability (LLP) and battery size, meeting the electricity needs of tiers 4 and 5 is untenable through SHSs alone. Alternatively, a bottom-up microgrid composed of interconnected SHSs is proposed. Such an approach can enable the so-called climb up the rural electrification ladder. The impact of the microgrid size on the system metrics like LLP and energy deficit is evaluated. Finally, it is found that the interconnected SHS-based microgrid can provide more than 40% and 30% gains in battery sizing for the same LLP level as compared to the standalone SHSs sizes for tiers 4 and 5 of the MTF, respectively, thus quantifying the definite gains of an SHS-based microgrid over standalone SHSs. This study paves the way for visualizing SHS-based rural DC microgrids that can not only enable electricity access to the higher tiers of the MTF with lower battery storage needs but also make use of existing SHS infrastructure, thus enabling a technologically easy climb up the rural electrification ladder.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1031
Author(s):  
Maryam Nasri ◽  
Herbert L. Ginn ◽  
Mehrdad Moallem

This paper presents the implementation of an agent-based architecture suitable for the coordination of power electronic converters in stand-alone microgrids. To this end, a publish-subscribe agent architecture was utilized as a distributed microgrid control platform. Over a distributed hash table (DHT) searching overlay, the publish-subscribe architecture was identified based on a numerical analysis as a scalable agent-based technology for the distributed real-time coordination of power converters in microgrids. The developed framework was set up to deploy power-sharing distributed optimization algorithms while keeping a deterministic time period of a few tens of milliseconds for a system with tens of converters and when multiple events might happen concurrently. Several agents participate in supervisory control to regulate optimum power-sharing for the converters. To test the design, a notional shipboard system, including several converters, was used as a case study. Results of implementing the agent-based publish-subscribe control system using the Java Agent Development Framework (JADE) are presented.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3508
Author(s):  
Jing Li ◽  
Hongda Cai ◽  
Pengcheng Yang ◽  
Wei Wei

In the last several years, the coordination control of hybrid AC/DC microgrids (HMGs) has been gaining increasingly more attention. However, most of these discussions are focused on single-bus HMGs whose AC or DC bus is not sectionalized by AC or DC breakers. Compared with these single-bus HMGs, the bus-sectionalized HMG has more flexible topologies, more diverse operation modes, and consequently higher service reliability. However, meanwhile, these benefits also bring challenges to the stable operation of bus-sectionalized HMGs, particularly for mode switching. Relying on the national HMG demonstrative project in Shaoxing, China, this paper makes efforts to present the hierarchical control paradigm of a typical bus-sectionalized HMG toward standardization. The test results demonstrate that the proposed system provides seamless switching and uninterrupted power supply without controller reconfiguration among different operation modes. The operational data are also brought forth and analyzed to provide significant and useful experiences for designing and developing similar HMGs in the future.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1463
Author(s):  
Kwami Senam A. Sedzro ◽  
Kelsey Horowitz ◽  
Akshay K. Jain ◽  
Fei Ding ◽  
Bryan Palmintier ◽  
...  

With the increasing share of distributed energy resources on the electric grid, utility companies are facing significant decisions about infrastructure upgrades. An alternative to extensive and capital-intensive upgrades is to offer non-firm interconnection opportunities to distributed generators, via a coordinated operation of utility scale resources. This paper introduces a novel flexible interconnection option based on the last-in, first-out principles of access aimed at minimizing the unnecessary non-firm generation energy curtailment by balancing access rights and contribution to thermal overloads. Although we focus on solar photovoltaic (PV) plants in this work, the introduced flexible interconnection option applies to any distributed generation technology. The curtailment risk of individual non-firm PV units is evaluated across a range of PV penetration levels in a yearlong quasi-static time-series simulation on a real-world feeder. The results show the importance of the size of the curtailment zone in the curtailment risk distribution among flexible generation units as well as that of the “access right” defined by the order in which PV units connect to the grid. Case study results reveal that, with a proper selection of curtailment radius, utilities can reduce the total curtailment of flexible PV resources by up to more than 45%. Findings show that non-firm PV generators can effectively avoid all thermal limit-related upgrade costs.


2020 ◽  
Vol 29 (15) ◽  
pp. 2050246 ◽  
Author(s):  
B. N. Ch. V. Chakravarthi ◽  
G. V. Siva Krishna Rao

In solar photovoltaic (PV)-based DC microgrid systems, the voltage output of the classical DC–DC converter produces very less voltage as a result of poor voltage gain. Therefore, cascaded DC–DC boost converters are mandatory for boosting the voltage to match the DC microgrid voltage. However, the number of devices utilized in the DC–DC conversion stage becomes higher and leads to more losses. Thereby, it affects the system efficiency and increases the complication of the system and cost. In order to overcome this drawback, a novel double-boost DC–DC converter is proposed to meet the voltage in DC microgrid. Also, this paper discusses the detailed operation of maximum power point (MPP) tracking techniques in the novel double-boost DC–DC converter topology. The fundamental [Formula: see text]–[Formula: see text] and [Formula: see text]–[Formula: see text] characteristics of solar photovoltaic system, operational details of MPP execution and control strategies for double-boost DC/DC converter are described elaborately. The proposed converter operation and power injection into the DC microgrid are verified through the real-time PSCAD simulation and the validation is done through the experiment with hardware module which is indistinguishable with the simulation platform.


Sign in / Sign up

Export Citation Format

Share Document