scholarly journals Influence of Gasoline Addition on Biodiesel Combustion in a Compression-Ignition Engine with Constant Settings

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1499
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik

This paper presents results of investigation of co-combustion process of biodiesel with gasoline, in form of mixture and using dual fuel technology. The main objective of this work was to show differences in both combustion systems of the engine powered by fuels of different reactivity. This paper presents parameters of the engine and the assessment of combustion stability. It turns out that combustion process of biodiesel was characterized by lower ignition delay compared to diesel fuel combustion. For 0.54 of gasoline energetic fraction, the ignition delay increased by 25% compared to the combustion of the pure biodiesel, but for dual fuel technology for 0.95 of gasoline fraction it was decreased by 85%. For dual fuel technology with the increase in gasoline fraction, the specific fuel consumption (SFC) was decreased for all analyzed fractions of gasoline. In the case of blend combustion, the SFC was increased in comparison to dual fuel technology. An analysis of spread of ignition delay and combustion duration was also presented. The study confirmed that it is possible to co-combust biodiesel with gasoline in a relatively high energetic fraction. For the blend, the ignition delay was up to 0.54 and for dual fuel it was near to 0.95.

Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 946 ◽  
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik

The aim of the work is a comparison of two combustion systems of fuels with different reactivity. The first is combustion of the fuel mixture and the second is combustion in a dual-fuel engine. Diesel fuel was burned with pure ethanol. Both methods of co-firing fuels have both advantages and disadvantages. Attention was paid to the combustion stability aspect determined by COVIMEP as well as the probability density function of IMEP. It was analyzed also the spread of the maximum pressure value, the angle of the position of maximum pressure. The influence of ethanol on ignition delay time spread and end of combustion process was evaluated. The experimental investigation was conducted on 1-cylinder air cooled compression ignition engine. The test engine operated with constant rpm equal to 1500 rpm and constant angle of start of diesel fuel injection. The engine was operated with ethanol up to 50% of its energy fraction.


2019 ◽  
Vol 178 (3) ◽  
pp. 155-161
Author(s):  
Łukasz NOWAK ◽  
Wojciech TUTAK

The paper presents result of combustion stability assessment of dual fuel engine. The authors analyzed results of co-combustion of diesel fuel with alcohol in terms of combustion stability. The comparative analysis of both the operational parameters of the engine and the IMEP, as the parameters determining the stability of the combustion process, were carried out. It was analyzed, among others values of the COVIMEP coefficient, the spread of the maximum pressure value, the angle of the position of maximum pressure and the probability density distribution of the IMEP. The experimental investigation was conducted on 1-cylinder air cooled compression ignition engine. The test engine operated with constant rpm equal to 1500 rpm and constant angle of start of diesel fuel injection. The engine was operat-ed with ethanol up to 50% of its energy fraction. The influence of ethanol on ignition delay time spread and end of combustion process was evaluated. It turns out that the share of ethanol does not adversely affect the stability of ignition..


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2817
Author(s):  
Arkadiusz Jamrozik ◽  
Wojciech Tutak ◽  
Karol Grab-Rogaliński

The development of compression ignition engines depends mainly on using alternative fuels, such as alcohols. The paper presents the results of tests of a stationary compression ignition engine fueled with mixtures of diesel oil and n-butanol with an energy share from 0 to 60%. The combustion and emission results of a dual-fuel engine were compared to a conventional diesel-only engine. As part of the work, the combustion process, including changes in pressure and heat release rate, as well as exhaust emissions from the test engine, were investigated. The main operational parameters of the engine were determined, including mean indicated pressure, thermal efficiency and specific energy consumption. Moreover, the stability of the engine operation was analyzed. The research shows that the 60% addition of n-butanol to diesel fuel increases the ignition delay (by 39%) and shortens the combustion duration (by 57%). In addition, up to 40%, it results in increased pmax, HRRmax and PPRmax. The engine was characterized by the highest efficiency, equal to 41.35% when operating on DB40. In the whole range of alcohol content, the dual-fuel engine was stable. With the increase of n-butanol content to 40%, the emission of NOx increased. The lowest concentration of CO was obtained during the combustion of DB50. After the initial increase (for DB20), the THC emission was reduced to the lowest value for DB40. Increasing the energy share of alcohol to 60% resulted in a significant, more than 43 times, reduction in soot emissions.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 971 ◽  
Author(s):  
Arkadiusz Jamrozik ◽  
Wojciech Tutak ◽  
Renata Gnatowska ◽  
Łukasz Nowak

The co-combustion of diesel with alcohol fuels in a compression ignition dual fuel engine is one of the ways of using alternative fuels to power combustion engines. Scientific explorations in this respect should not only concern the combustion process in one engine cycle, which is most often not representative for a longer engine life, but should also include an analysis of multiple cycles, which would allow for indicating reliable parameters of engine operation and its stability. This paper presents experimental examinations of a CI engine with a dual fuel system, in which co-combustion was performed for diesel and two alcohol fuels (methanol and ethanol) with energy contents of 20%, 30%, 40% and 50%. The research included the analysis of the combustion process and the analysis of cycle-by-cycle variation of the 200 subsequent engine operation cycles. It was shown that the presence and increase in the share of methanol and ethanol used for co-combustion with diesel fuel causes an increase in ignition delay and increases the heat release rate and maximum combustion pressure values. A larger ignition delay is observed for co-combustion with methanol. Based on changes in the coefficient of variation of the indicated mean effective pressure (COVIMEP) and the function of probability density of the indicated mean effective pressure (f(IMEP)), prepared for a series of engine operation cycles, it can be stated that the increase in the percentage of alcohol fuel used for co-combustion with diesel fuel does not impair combustion stability. For the highest percentage of alcohol fuel (50%), the co-combustion of diesel with methanol shows a better stability.


2020 ◽  
pp. 146808742094094
Author(s):  
Michał Pyrc ◽  
Michał Gruca ◽  
Arkadiusz Jamrozik ◽  
Wojciech Tutak ◽  
Romualdas Juknelevičius

This study presents experimental examinations of a stationary single-cylinder compression ignition dual fuel engine for the combustion of diesel fuel with water ammonia solution. The effect of 25% water ammonia solution on the combustion, performance, emissions and stability of the dual fuel compression ignition engine was investigated, taking into account its different operating conditions. The experiments were carried out for three modes of engine operation with three loads (35%, 60% and 100%) and a change in the water ammonia solution energy fraction at 60% load, within the range from 0% to 17%. Co-combustion of diesel fuel with water ammonia solution in the test engine contributed to an increase in the ignition delay period and combustion duration, and to an increase in the heat release rate. Compared to the combustion of diesel fuel alone, combustion involving ammonia causes deterioration in the stability of the test engine operation, yet not exceeding the permissible stability indices for reciprocating combustion engines. Addition of water ammonia solution led to reduced nitrogen oxide emissions and increasing carbon monoxide and hydrocarbon emissions and did not result in significant changes in carbon dioxide emissions.


2014 ◽  
Vol 699 ◽  
pp. 648-653 ◽  
Author(s):  
Bahaaddein K.M. Mahgoub ◽  
Suhaimi Hassan ◽  
Shaharin Anwar Sulaiman

In this review, a series of research papers on the effects of hydrogen and carbon monoxide content in syngas composition on the performance and exhaust emission of compression ignition diesel engines, were compiled. Generally, the use of syngas in compression ignition (CI) diesel engine leads to reduce power output due to lower heating value when compared to pure liquid diesel mode. Therefore, variation in syngas composition, especially hydrogen and carbon monoxide (Combustible gases), is suggested to know the appropriate syngas composition. Furthermore, the simulated model of syngas will help to further explore the detailed effects of engine parameters on the combustion process including the ignition delay, combustion duration, heat release rate and combustion phasing. This will also contribute towards the efforts of improvement in performance and reduction in pollutants’ emissions from CI diesel engines running on syngas at dual fuel mode. Generally, the database of syngas composition is not fully developed and there is still room to find the optimum H2 and CO ratio for performance, emission and diesel displacement of CI diesel engines.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Hongliang Yu ◽  
◽  
Weiwei Wang ◽  
Shulin Duan ◽  
Peiting Sun ◽  
...  

The methane (CH4) burning interruption factor and the characteristic values characterizing the flame combustion state in the engine cylinder were defined. The logical mapping relationship between image feature values and combustion conditions in the framework of iconology was proposed. Results show that there are two periods of combustion instability and combustion stability during the combustion of dual fuel. The high temperature region with a cylinder temperature greater than 1800K is the largest at 17°CA after top dead center (TDC), accounting for 73.25% of the combustion chamber area. During the flame propagation, the radial flame velocity and the axial flame velocity are “unimodal” and “wavy,” respectively. During the combustion process, the CH4 burning interruption factor first increased and then decreased. The combustion duration in dual fuel mode is 21.25°CA, which is 15.5°CA shorter than the combustion duration in pure diesel mode.


Sign in / Sign up

Export Citation Format

Share Document