scholarly journals In Vitro Anti-Wrinkle and Skin-Moisturizing Effects of Evening Primrose (Oenothera biennis) Sprout and Identification of Its Active Components

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 145
Author(s):  
Tae Heon Kim ◽  
Woo Jung Kim ◽  
Soon Yeong Park ◽  
Hoon Kim ◽  
Dae Kyun Chung

The present study aimed to investigate the effect of Oenothera biennis sprout extract (OBS-E) on skin-function improvement in an in vitro system and to identify its pharmaceutically active components. OBS-E showed antioxidant ability in radical scavenging and reducing power assays, significantly inhibited matrix metalloproteinases-1 and -2, and increased the production of type I collagen, indicating its anti-wrinkle activity. Furthermore, OBS-E significantly increased the level of hyaluronic acid (HA) and the expression of moisturizing genes, such as hyaluronic acid synthase 2 (HAS2) and aquaporin 3 (AQP3), indicating it is effective in enhancing skin hydration. High-performance liquid chromatography (HPLC) and mass spectrometry (MS) analyses showed that OBS-E contained high levels of polyphenolic acids, such as gallic acid and ellagic acid, in addition to flavonoid glycosides, such as luteolin 7-glucuronide and quercetin 3-glucuronide. Our results suggest that these major phytochemicals are likely to play crucial roles in the expression of antioxidant, anti-wrinkle, and moisturizing activities of OBS-E.

2012 ◽  
Vol 303 (5) ◽  
pp. C577-C588 ◽  
Author(s):  
Sarah Calve ◽  
Jahdonna Isaac ◽  
Jonathan P. Gumucio ◽  
Christopher L. Mendias

Hyaluronic acid (HA) is a component of the extracellular matrix (ECM) in most vertebrate tissues and is thought to play a significant role during development, wound healing, and regeneration. In vitro studies have shown that HA enhances muscle progenitor cell recruitment and inhibits premature myotube fusion, implicating a role for this glycosaminoglycan in functional repair. However, the spatiotemporal distribution of HA during muscle growth and repair was unknown. We hypothesized that inducing hypertrophy via synergist ablation would increase the expression of HA and the HA synthases (HAS1–HAS3). We found that HA and HAS1–HAS3 were significantly upregulated within the plantaris muscle in response to Achilles tenectomy. HA concentration significantly increased 2.8-fold after 2 days but decreased towards levels comparable to age-matched controls by 14 days. Using immunohistochemistry, we found the colocalization of HAS1–HAS3 with macrophages, blood vessel epithelia, and fibroblasts varied in response to time and/or tenectomy. At the level of gene expression, only HAS1 and HAS2 significantly increased with respect to both time and tenectomy. The profiles of additional genes that influence ECM composition during muscle repair, tenascin-C, type I collagen, the HA-degrading hyaluronidases (Hyal) and matrix metalloproteinases (MMP) were also investigated. Hyal1 and Hyal2 were highly expressed in skeletal muscle but did not change after tenectomy; however, indicators of hypertrophy, MMP-2 and MMP-14, were significantly upregulated from 2 to 14 days. These results indicate that HA levels dynamically change in response to a hypertrophic stimulus and various cells may participate in this mechanism of skeletal muscle adaptation.


2006 ◽  
Vol 1 (5) ◽  
pp. 1934578X0600100 ◽  
Author(s):  
Lindy L. Esterhuizen ◽  
Riaan Meyer ◽  
Ian A. Dubery

Coleonema album, a member of the South African ‘Fynbos’ biome, was evaluated for its antioxidant and free radical scavenging activity. Ethanol- and acetone-based extracts from plant material obtained from two different geographical areas were analysed. A bioassay-guided fractionation methodology was followed for screening of active compounds. The 1,1-diphenyl-2-picrylhydrazyl (DPPH)-TLC method revealed the presence of a number of antioxidants which were quantified by the DPPH-spectrophotometric assay and the oxygen radical absorbance capacity (ORAC) assay. The C. album extracts possessed significant in vitro antioxidant activity, a large portion of which appeared to be contributed by the phenolic compounds. In contrast, the reducing power of the extracts could not be correlated with the observed antioxidant activity. Identification and structural information of the active components were obtained by a combination of preparative TLC and LC-MS which revealed the presence of coumarin aglycones and glycosides. The results of this study indicate that C. album contains strong antioxidants that warrant further investigation into the relationship between the structure and activity of the active coumarin metabolites.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Hairong Zhong ◽  
Choyoung Hong ◽  
Zhouxin Han ◽  
Seung Jin Hwang ◽  
Byunghyun Kim ◽  
...  

In oriental medicine, mixtures of medical plants are always used as prescriptions for diseases. Natural products extracted from herbs have great potential antiaging effects. Previous studies and clinical trials have shown several critical functions of Erjingwan (EJW), such as nourishing Yin, kidney tonifying and aging-resistance. We assumed that EJW extracts exerted the antiaging effects through nourishing Yin. We examined the antiaging effects of EJW extracts on healthy human skin by noninvasive measurements. Then we estimated the cell proliferation and DPPH radical scavenging rate. Western blotting analysis was used to determine the expressions of matrix metalloproteinase-1 (MMP-1), type I collagen (COL1A2), p-NF-κB, NF-κB, p-IκBα, IκBα, p-Nrf2, and HO-1. EJW extracts did not affect moisture content, TEWL and skin chroma, while it significantly improved skin glossiness and skin elasticity. Moreover, EJW extracts could downregulate the MMP1 expression and upregulate the COL1A2 expression. In addition, it promoted the Nrf2 pathway while it inhibited the NF-κB pathway. With the application of cream containing EJW extracts, the skin aging state was significantly improved. Furthermore, in vitro studies showed that EJW extracts contributed to the repair of skin after injury. Taken together, the antiaging effects of EJW extracts were related to its antioxidant and anti-inflammatory abilities.


Author(s):  
Nicola Alessio ◽  
Antonietta Stellavato ◽  
Domenico Aprile ◽  
Donatella Cimini ◽  
Valentina Vassallo ◽  
...  

Mesenchymal stromal cells (MSCs) are currently used for cartilage cell therapy because of their well proven capacity to differentiate in chondrocytes. The advantage of MSC-based therapy is the possibility of producing a high number of chondrocytes for implants. The transplant procedure, however, has some limitations, since MSCs may produce non-functional chondrocytes. This limit has been challenged by cultivating MSC in media with hydrogels containing hyaluronic acid (HA), extractive chondroitin sulfate (CS), or bio-fermentative unsulphated chondroitin (BC) alone or in combination. Nevertheless, a clear study of the effect of glycosaminoglycans (GAGs) on chondrocyte differentiation is still lacking, especially for the newly obtained unsulfated chondroitin of biotechnological origin. Are these GAGs playing a role in the commitment of stem cells to chondrocyte progenitors and in the differentiation of progenitors to mature chondrocytes? Alternatively, do they have a role only in one of these biological processes? We evaluated the role of HA, CS, and – above all – BC in cell commitment and chondrocyte differentiation of MSCs by supplementing these GAGs in different phases of in vitro cultivation. Our data provided evidence that a combination of HA and CS or of HA and BC supplemented during the terminal in vitro differentiation and not during cell commitment of MSCs improved chondrocytes differentiation without the presence of fibrosis (reduced expression of Type I collagen). This result suggests that a careful evaluation of extracellular cues for chondrocyte differentiation is fundamental to obtaining a proper maturation process.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Cindy Yi Chi Hsieh ◽  
Fang-Wei Hu ◽  
Wen-Shiang Chen ◽  
Wei-Bor Tsai

Biological response against foreign implants often leads to encapsulation, possibly resulting in malfunction of implants devices. The aim of this study was to reduce the foreign body reaction by surface modification of biomaterials through layer-by-layer deposition of type I collagen (COL)/hyaluronic acid (HA) multilayer films. Polydimethylsiloxane (PDMS) samples were coated with alternative COL and HA layers with different layers. We found that the in vitro adhesion, proliferation, and activation of macrophage-like cells were greatly decreased by COL/HA multilayered deposition. The PDMS samples modified with 20 bilayers of COL/HA were implanted in rats for 3 weeks, and the thickness of encapsulation surrounding the samples was decreased by 29–57% compared to the control unmodified PDMS. This study demonstrates the potential of COL/HA multilayer films to reduce foreign body reaction.


RSC Advances ◽  
2017 ◽  
Vol 7 (42) ◽  
pp. 25828-25837 ◽  
Author(s):  
Haiyong Ao ◽  
Chucheng Lin ◽  
Binen Nie ◽  
Shengbing Yang ◽  
Youtao Xie ◽  
...  

The synergistic effect on osseointegration is existed between Type I collagen (ColI) and hyaluronic acid (HA), and the early osseogenetic activity of ColI/HA multilayer modified titanium coatings (TC) is higher than that ColI modified TC and HA modified TC.


Author(s):  
Arthur J. Wasserman ◽  
Kathy C. Kloos ◽  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


2020 ◽  
Vol 16 ◽  
Author(s):  
Sajjad Esmaeili ◽  
Nazanin Ghobadi ◽  
Donya Nazari ◽  
Alireza Pourhossein ◽  
Hassan Rasouli ◽  
...  

Background: Curcumin, as the substantial constituent of the turmeric plant (Curcuma longa), plays a significant role in the prevention of various diseases, including diabetes. It possesses ideal structure features as enzyme inhibitor, including a flexible backbone, hydrophobic nature, and several available hydrogen bond (H-bond) donors and acceptors. Objective: The present study aimed at synthesizing several novel curcumin derivatives and further evaluation of these compounds for possible antioxidant and anti-diabetic properties along with inhibitory effect against two carbohydrate-hydrolyzing enzymes, α-amylase and α-glucosidase, as these enzymes are therapeutic targets for attenuation of postprandial hyperglycemia. Methods: Therefore, curcumin-based pyrido[2,3-d]pyrimidine derivatives were synthesized and identified using an instrumental technique like NMR spectroscopy and then screened for antioxidant and enzyme inhibitory potential. Total antioxidant activity, reducing power assay and 1,1-diphenyl-2-picrylhydrazyl (DPPH• ) radical scavenging activity were done to appraisal the antioxidant potential of these compounds in vitro. Results: Compounds L6-L9 showed higher antioxidant activity while L4, L9, L12 and especially L8 exhibited the best selectivity index (lowest α-amylase/α-glucosidase inhibition ratio). Conclusion: These antioxidant inhibitors may be potential anti-diabetic drugs, not only to reduce glycemic index but also to limit the activity of the major reactive oxygen species (ROS) producing pathways.


2021 ◽  
Vol 10 (14) ◽  
pp. 3141
Author(s):  
Hyerin Jung ◽  
Yeri Alice Rim ◽  
Narae Park ◽  
Yoojun Nam ◽  
Ji Hyeon Ju

Osteogenesis imperfecta (OI) is a genetic disease characterized by bone fragility and repeated fractures. The bone fragility associated with OI is caused by a defect in collagen formation due to mutation of COL1A1 or COL1A2. Current strategies for treating OI are not curative. In this study, we generated induced pluripotent stem cells (iPSCs) from OI patient-derived blood cells harboring a mutation in the COL1A1 gene. Osteoblast (OB) differentiated from OI-iPSCs showed abnormally decreased levels of type I collagen and osteogenic differentiation ability. Gene correction of the COL1A1 gene using CRISPR/Cas9 recovered the decreased type I collagen expression in OBs differentiated from OI-iPSCs. The osteogenic potential of OI-iPSCs was also recovered by the gene correction. This study suggests a new possibility of treatment and in vitro disease modeling using patient-derived iPSCs and gene editing with CRISPR/Cas9.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 124
Author(s):  
Haidy A. Gad ◽  
Nilufar Z. Mamadalieva ◽  
Stefan Böhmdorfer ◽  
Thomas Rosenau ◽  
Gokhan Zengin ◽  
...  

The compositions of volatile components in the aerial parts of six Astragalus species, namely A. campylotrichus (Aca), A. chiwensis (Ach), A. lehmannianus (Ale), A. macronyx (Ama), A. mucidus (Amu) and A. sieversianus (Asi), were investigated using gas chromatograph-mass spectrometry (GC-MS) analysis. Ninety-seven metabolites were identified, accounting for 73.28, 87.03, 74.38, 87.93, 85.83, and 91.39% of Aca, Ach, Ale, Ama, Amu and Asi whole oils, respectively. Sylvestrene was the most predominant component in Asi, Amu and Ama, with highest concentration in Asi (64.64%). In addition, (E)-2-hexenal was present in a high percentage in both Ale and Ach (9.97 and 10.1%, respectively). GC-MS based metabolites were subjected to principal component analysis (PCA) and hierarchal cluster analysis (HCA) to explore the correlations between the six species. The PCA score plot displayed clear differentiation of all Astragalus species and a high correlation between the Amu and Ama species. The antioxidant activity was evaluated in vitro using various assays, phosphomolybdenum (PM), 2,2 diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2-azino bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), cupric reducing antioxidant capacity (CUPRAC), ferric reducing power (FRAP) and ferrous ion chelation (FIC) assays. In addition, the potential for the volatile samples to inhibit both acetyl/butyrylcholinesterases (AChE, BChE), α- amylase, α-glucosidase and tyrosinase was assessed. Most of the species showed considerable antioxidant potential in the performed assays. In the DPPH assay, Ama exhibited the maximum activity (24.12 ± 2.24 mg TE/g sample), and the volatiles from Amu exhibited the highest activity (91.54 mgTE/g oil) in the ABTS radical scavenging assay. The effect was more evident in both CUPRAC and FRAP assays, where both Ale and Ama showed the strongest activity in comparison with the other tested species (84.06, 80.28 mgTE/g oil for CUPRAC and 49.47, 49.02 mgTE/g oil for FRAP, respectively). Asi demonstrated the strongest AChE (4.55 mg GALAE/g oil) and BChE (3.61 mg GALAE/g oil) inhibitory effect. Furthermore, the best tyrosinase inhibitory potential was observed for Ale (138.42 mg KAE/g). Accordingly, Astragalus species can be utilized as promising natural sources for many medicinally important components that could be tested as drug candidates for treating illnesses such as Alzheimer’s disease, diabetes mellitus and oxidative stress-related diseases.


Sign in / Sign up

Export Citation Format

Share Document