scholarly journals Enhancing the Cannabidiol (CBD) Compound in Formulated Hemp (Cannabis sativa L.) Leaves through the Application of Hot-Melt Extrusion

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 837
Author(s):  
Md Obyedul Kalam Azad ◽  
Byeong Ryeol Ryu ◽  
Md Soyel Rana ◽  
Md Hafizur Rahman ◽  
Jung-Dae Lim ◽  
...  

Cannabidiol (CBD) is a non-psychoactive cannabinoid compound found in hemp plants that has recently sparked interest in the biomedical and food industries. CBD is a natural decarboxylated product of cannabidiolic acid (CBDA). In this study, processing parameters were developed to enhance the decarboxylation process of CBDA in hemp leaves using hot-melt extrusion (HME). The hemp leaves were formulated with two different acid-based polymers, namely ascorbic acid (AA) and ascorbyl palmitate (AP), before the HME. The results showed that the carboxylation process of CBDA was increased by at least 2.5 times in the extrudate leaves and the content of the CBD was four times higher when formulated with AP (2800 µg/g) compared with the raw leaves (736 µg/g). The total phenolic and total flavonoid content, as well as the DPPH antioxidant capacity, were higher in the AP formulated extrudate. At the same time, the Δ9-tetrahydrocannabinol (THC) content was reduced by half in the extrudate compared with the raw leaves. It was also observed that double HME processing did not increase the decarboxylation process. It was concluded that the HME process significantly improved the conversion rate of CBDA to CBD in formulated hemp leaves with a reduced THC content.

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Yunyao Jiang ◽  
Jingpei Piao ◽  
Nan Liu ◽  
Jincai Hou ◽  
Jianxun Liu ◽  
...  

Angelica gigas Nakai (AGN) was first processed by ultrafine grinding technology and hot-melt extrusion (HME). The potential antioxidant and anti-inflammatory activities of AGN with a different process were compared, and the effect on the human Kv1.3 potassium channel was detected. The process of ultrafine powderization on AGN significantly increased the total phenolic and flavonoid contents, antioxidant activity, and DNA damage protective effect. On the contrary, AGN solid dispersion (AGN-SD) based on Soluplus® showed the highest inhibitory effect on NO production and the human Kv1.3 channel. In addition, AGN-SD inhibited the production of prostaglandin E2 and intracellular reactive oxygen species and the mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, interleukin 1β, and interleukin 6. Taken together, these results suggest that ultrafine powderization and solid dispersion formation via HME can significantly improve the biological activities of AGN. The results also suggested that ultrafine powderization and HME may be developed and applied in the pharmaceutical industry.


2019 ◽  
Vol 13 (1) ◽  
pp. 3
Author(s):  
Md Obyedul Kalam Azad ◽  
Wie Soo Kang ◽  
Jung Dae Lim ◽  
Cheol Ho Park

Angelica gigas Nakai (AGN) is a popular traditional herbal medicine which has been used to alleviate various human diseases in Korea since ancient times. However, the low bioaccessibility of the nutraceutical compounds of AGN results in a poor water solubility, thereby limiting bioavailability. In this regard, a ternary AGN–biopolymer–plasticizer composite (AGNC) was developed to enhance the bioaccessibility of nutraceutical compounds from extrudate AGN formulations manufactured by hot melt extrusion (HME). The AGNC was prepared with extrudate AGN (EAGN) using different hydroxypropyl methylcellulose (HPMC) biopolymers (5% w/w) viz.: hypromellose phthalate (HP), hypromellose (AN), and hypromellose (CN) along with acetic acid (AA) (0.1 M, 20% w/v) as a plasticizer. The non-extrudate fresh AGN (FAGN) powder was used as a control. The physicochemical properties of the extrudate formulations and control were characterized by differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). DSC analysis showed a lower enthalpy (ΔH) (12.22 J/g) and lower glass transition temperature (Tg) (41 °C) in HP-AA-EAGN compared to the control. FTIR confirmed the physical crosslinking between AGN and biopolymer in the extrudate composite and demonstrated that some functional groups formed viz., -OH and -CH2. The obtained result also shows that the particle size was reduced by 341 nm, and solubility was increased by 65.5% in HP-AA-EAGN compared to the control (1499 nm, 29.4%, respectively). The bioaccessibility of the total phenolic content and the total flavonoids—including decursin (D) and decursinol angelate (DA)—were significantly higher in HP-AA-EAGN compared to the control. The 2,2-diphenyl-1 picryl hydrazyl (DPPH) free radical scavenging capacity and ferric reducing antioxidant power assay (FRAP) indicated that the HP-AA-EAGN formulation preserves a greater antioxidant profile than the other formulations. Finally, it is summarized that the addition of acidified HP biopolymer increased the bioaccessibility, functionality, and improved the physicochemical properties of nutraceutical compounds in the extrudate AGN formulation.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1516
Author(s):  
Abdullah Alshetaili ◽  
Saad M. Alshahrani ◽  
Bjad K. Almutairy ◽  
Michael A. Repka

The aim of this study was to demonstrate the impact of processing parameters of the hot-melt extrusion (HME) on the pharmaceutical formulation properties. Carbamazepine (CBZ) was selected as a model water-insoluble drug. It was incorporated into Soluplus®, which was used as the polymeric carrier, to produce a solid dispersion model system. The following HME-independent parameters were investigated at different levels: extrusion temperature, screw speed and screw configuration. Design of experiment (DOE) concept was applied to find the most significant factor with minimum numbers of experimental runs. A full two-level factorial design was applied to assess the main effects, parameter interactions and total error. The extrudates’ CBZ content and the in vitro dissolution rate were selected as response variables. Material properties, including melting point, glass transition, and thermal stability, and polymorphs changes were used to set the processing range. In addition, the extruder torque and pressure were used to find the simplest DOE model. Each change of the parameter showed a unique pattern of dissolution profile, indicating that processing parameters have an influence on formulation properties. A simple, novel and two-level factorial design was able to evaluate each parameter effect and find the optimized formulation. Screw configuration and extrusion temperature were the most affecting parameters in this study.


Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 41 ◽  
Author(s):  
Md Azad ◽  
Won Kim ◽  
Cheng Jin ◽  
Wie Kang ◽  
Cheol Park ◽  
...  

The poor bioaccessibility of the phenolic compounds of soybeans is a key challenge to developing functional food products. Therefore, a novel hydrophilic food-grade hydroxypropyl methylcellulose (HPMC) polymer was added to soybean to prepare a soybean food composite (SFC), in order to improve the soybean’s functionality. The SFC was prepared with soybean (95%) plus HPMC (5%) (w/w) mixes (HSE), as well as 100% soybean extrudate (SE), at 80 °C and 130 °C by a hot melt extrusion (HME) process. A non-extrudate 100% soybean material was considered as a control. It is observed that water solubility was significantly increased (35.18%), and particle size reached to nano-size (171.5 nm) in HSE at 130 °C compared to the control (7.14% and 1166 nm, respectively). The total phenolic, flavonoid, and single isoflavones content, including daidzin, daidzein, glycitein, genistein, and genistin was significantly increased in HSE at 130 °C compared to the control. The antioxidant properties were also significantly increased in HSE at 130 °C compared to the control, measured by 2,2-diphenyl-1 picryl hydrazyl (DPPH), a ferric reducing antioxidant power assay (FRAP), and the phosphomolybdenum method (PPMD). Finally, it is concluded that the HPMC polymer could be used as a novel excipient to develop nanocomposite via HME, in order to improve the functionality of soybean food products.


Sign in / Sign up

Export Citation Format

Share Document