scholarly journals MalCaps: A Capsule Network Based Model for the Malware Classification

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 929
Author(s):  
Xiaoliang Zhang ◽  
Kehe Wu ◽  
Zuge Chen ◽  
Chenyi Zhang

The research on malware detection enabled by deep learning has become a hot issue in the field of network security. The existing malware detection methods based on deep learning suffer from some issues, such as weak ability of deep feature extraction, relatively complex model, and insufficient ability of model generalization. Traditional deep learning architectures, such as convolutional neural networks (CNNs) variants, do not consider the spatial hierarchies between features, and lose some information on the precise position of a feature within the feature region, which is crucial for a malware file which has specific sections. In this paper, we draw on the idea of image classification in the field of computer vision and propose a novel malware detection method based on capsule network architecture with hyper-parameter optimized convolutional layers (MalCaps), which overcomes CNNs limitations by removing the need for a pooling layer and introduces capsule layers. Firstly, the malware is transformed into a grayscale image. Then, the dynamic routing-based capsule network is used to detect and classify the image. Without advanced feature extraction and with only a small number of labeled samples, the presented method is tested on an unbalanced Microsoft Malware Classification Challenge (MMCC) dataset and experimental results produce testing accuracy of 99.34%, improving on a number of traditional deep learning models posited in recent malware classification literature.


2021 ◽  
pp. 1063293X2198894
Author(s):  
Prabira Kumar Sethy ◽  
Santi Kumari Behera ◽  
Nithiyakanthan Kannan ◽  
Sridevi Narayanan ◽  
Chanki Pandey

Paddy is an essential nutrient worldwide. Rice gives 21% of worldwide human per capita energy and 15% of per capita protein. Asia represented 60% of the worldwide populace, about 92% of the world’s rice creation, and 90% of worldwide rice utilization. With the increase in population, the demand for rice is increased. So, the productivity of farming is needed to be enhanced by introducing new technology. Deep learning and IoT are hot topics for research in various fields. This paper suggested a setup comprising deep learning and IoT for monitoring of paddy field remotely. The vgg16 pre-trained network is considered for the identification of paddy leaf diseases and nitrogen status estimation. Here, two strategies are carried out to identify images: transfer learning and deep feature extraction. The deep feature extraction approach is combined with a support vector machine (SVM) to classify images. The transfer learning approach of vgg16 for identifying four types of leaf diseases and prediction of nitrogen status results in 79.86% and 84.88% accuracy. Again, the deep features of Vgg16 and SVM results for identifying four types of leaf diseases and prediction of nitrogen status have achieved an accuracy of 97.31% and 99.02%, respectively. Besides, a framework is suggested for monitoring of paddy field remotely based on IoT and deep learning. The suggested prototype’s superiority is that it controls temperature and humidity like the state-of-the-art and can monitor the additional two aspects, such as detecting nitrogen status and diseases.



2018 ◽  
Vol 7 (2.32) ◽  
pp. 279 ◽  
Author(s):  
K Swetha ◽  
K V.D.Kiran

The amazing advances of mobile phones enable their wide utilize. Since mobiles are joined with pariah applications, bundles of security and insurance issues are incited. But, current mobile malware analysis and detection advances are as yet flawed, incapable, and incomprehensive. On account of particular qualities of mobiles such as constrained assets, user action and neighborhood correspondence ability, consistent system network, versatile malware detection faces new difficulties, particularly on remarkable runtime malware area. This paper provides overview on  malware classification, methodologies of assessment, analysis and on and off device detection methods on android. The work mainly focuses on different classification algorithms which are used as a part of dynamic malware detection on android.  



Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 249
Author(s):  
Weiguo Zhang ◽  
Chenggang Zhao ◽  
Yuxing Li

The quality and efficiency of generating face-swap images have been markedly strengthened by deep learning. For instance, the face-swap manipulations by DeepFake are so real that it is tricky to distinguish authenticity through automatic or manual detection. To augment the efficiency of distinguishing face-swap images generated by DeepFake from real facial ones, a novel counterfeit feature extraction technique was developed based on deep learning and error level analysis (ELA). It is related to entropy and information theory such as cross-entropy loss function in the final softmax layer. The DeepFake algorithm is only able to generate limited resolutions. Therefore, this algorithm results in two different image compression ratios between the fake face area as the foreground and the original area as the background, which would leave distinctive counterfeit traces. Through the ELA method, we can detect whether there are different image compression ratios. Convolution neural network (CNN), one of the representative technologies of deep learning, can extract the counterfeit feature and detect whether images are fake. Experiments show that the training efficiency of the CNN model can be significantly improved by the ELA method. In addition, the proposed technique can accurately extract the counterfeit feature, and therefore achieves outperformance in simplicity and efficiency compared with direct detection methods. Specifically, without loss of accuracy, the amount of computation can be significantly reduced (where the required floating-point computing power is reduced by more than 90%).



2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xin Ma ◽  
Shize Guo ◽  
Wei Bai ◽  
Jun Chen ◽  
Shiming Xia ◽  
...  

The explosive growth of malware variants poses a continuously and deeply evolving challenge to information security. Traditional malware detection methods require a lot of manpower. However, machine learning has played an important role on malware classification and detection, and it is easily spoofed by malware disguising to be benign software by employing self-protection techniques, which leads to poor performance for existing techniques based on the machine learning method. In this paper, we analyze the local maliciousness about malware and implement an anti-interference detection framework based on API fragments, which uses the LSTM model to classify API fragments and employs ensemble learning to determine the final result of the entire API sequence. We present our experimental results on Ali-Tianchi contest API databases. By comparing with the experiments of some common methods, it is proved that our method based on local maliciousness has better performance, which is a higher accuracy rate of 0.9734.



Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2444
Author(s):  
Mazhar Javed Awan ◽  
Osama Ahmed Masood ◽  
Mazin Abed Mohammed ◽  
Awais Yasin ◽  
Azlan Mohd Zain ◽  
...  

In recent years the amount of malware spreading through the internet and infecting computers and other communication devices has tremendously increased. To date, countless techniques and methodologies have been proposed to detect and neutralize these malicious agents. However, as new and automated malware generation techniques emerge, a lot of malware continues to be produced, which can bypass some state-of-the-art malware detection methods. Therefore, there is a need for the classification and detection of these adversarial agents that can compromise the security of people, organizations, and countless other forms of digital assets. In this paper, we propose a spatial attention and convolutional neural network (SACNN) based on deep learning framework for image-based classification of 25 well-known malware families with and without class balancing. Performance was evaluated on the Malimg benchmark dataset using precision, recall, specificity, precision, and F1 score on which our proposed model with class balancing reached 97.42%, 97.95%, 97.33%, 97.11%, and 97.32%. We also conducted experiments on SACNN with class balancing on benign class, also produced above 97%. The results indicate that our proposed model can be used for image-based malware detection with high performance, despite being simpler as compared to other available solutions.



2020 ◽  
Author(s):  
Shamika Ganesan ◽  
vinayakumar R ◽  
Moez Krichen ◽  
Sowmya V ◽  
Roobaea Alroobaea ◽  
...  

In this paper, we explore the use of an attention based mechanism known as Residual Attention for malware detection and compare this with existing CNN based methods and conventional Machine Learning algorithms with the help of GIST features. The proposed method outperformed traditional malware detection methods which use Machine Learning and CNN based Deep Learning algorithms, by demonstrating an accuracy of 99.25%.



Author(s):  
Xiangjun Lu ◽  
Chi Zhang ◽  
Pei Cao ◽  
Dawu Gu ◽  
Haining Lu

With the renaissance of deep learning, the side-channel community also notices the potential of this technology, which is highly related to the profiling attacks in the side-channel context. Many papers have recently investigated the abilities of deep learning in profiling traces. Some of them also aim at the countermeasures (e.g., masking) simultaneously. Nevertheless, so far, all of these papers work with an (implicit) assumption that the number of time samples in raw traces can be reduced before the profiling, i.e., the position of points of interest (PoIs) can be manually located. This is arguably the most challenging part of a practical black-box analysis targeting an implementation protected by masking. Therefore, we argue that to fully utilize the potential of deep learning and get rid of any manual intervention, the end-to-end profiling directly mapping raw traces to target intermediate values is demanded.In this paper, we propose a neural network architecture that consists of encoders, attention mechanisms and a classifier, to conduct the end-to-end profiling. The networks built by our architecture could directly classify the traces that contain a large number of time samples (i.e., raw traces without manual feature extraction) while whose underlying implementation is protected by masking. We validate our networks on several public datasets, i.e., DPA contest v4 and ASCAD, where over 100,000 time samples are directly used in profiling. To our best knowledge, we are the first that successfully carry out end-to-end profiling attacks. The results on the datasets indicate that our networks could get rid of the tricky manual feature extraction. Moreover, our networks perform even systematically better (w.r.t. the number of traces in attacks) than those trained on the reduced traces. These validations imply our approach is not only a first but also a concrete step towards end-to-end profiling attacks in the side-channel context.



Diagnostics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27 ◽  
Author(s):  
Omneya Attallah ◽  
Maha A. Sharkas ◽  
Heba Gadelkarim

The increasing rates of neurodevelopmental disorders (NDs) are threatening pregnant women, parents, and clinicians caring for healthy infants and children. NDs can initially start through embryonic development due to several reasons. Up to three in 1000 pregnant women have embryos with brain defects; hence, the primitive detection of embryonic neurodevelopmental disorders (ENDs) is necessary. Related work done for embryonic ND classification is very limited and is based on conventional machine learning (ML) methods for feature extraction and classification processes. Feature extraction of these methods is handcrafted and has several drawbacks. Deep learning methods have the ability to deduce an optimum demonstration from the raw images without image enhancement, segmentation, and feature extraction processes, leading to an effective classification process. This article proposes a new framework based on deep learning methods for the detection of END. To the best of our knowledge, this is the first study that uses deep learning techniques for detecting END. The framework consists of four stages which are transfer learning, deep feature extraction, feature reduction, and classification. The framework depends on feature fusion. The results showed that the proposed framework was capable of identifying END from embryonic MRI images of various gestational ages. To verify the efficiency of the proposed framework, the results were compared with related work that used embryonic images. The performance of the proposed framework was competitive. This means that the proposed framework can be successively used for detecting END.



Sign in / Sign up

Export Citation Format

Share Document