scholarly journals Image-Based Malware Classification Using VGG19 Network and Spatial Convolutional Attention

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2444
Author(s):  
Mazhar Javed Awan ◽  
Osama Ahmed Masood ◽  
Mazin Abed Mohammed ◽  
Awais Yasin ◽  
Azlan Mohd Zain ◽  
...  

In recent years the amount of malware spreading through the internet and infecting computers and other communication devices has tremendously increased. To date, countless techniques and methodologies have been proposed to detect and neutralize these malicious agents. However, as new and automated malware generation techniques emerge, a lot of malware continues to be produced, which can bypass some state-of-the-art malware detection methods. Therefore, there is a need for the classification and detection of these adversarial agents that can compromise the security of people, organizations, and countless other forms of digital assets. In this paper, we propose a spatial attention and convolutional neural network (SACNN) based on deep learning framework for image-based classification of 25 well-known malware families with and without class balancing. Performance was evaluated on the Malimg benchmark dataset using precision, recall, specificity, precision, and F1 score on which our proposed model with class balancing reached 97.42%, 97.95%, 97.33%, 97.11%, and 97.32%. We also conducted experiments on SACNN with class balancing on benign class, also produced above 97%. The results indicate that our proposed model can be used for image-based malware detection with high performance, despite being simpler as compared to other available solutions.

2018 ◽  
Vol 7 (2.32) ◽  
pp. 279 ◽  
Author(s):  
K Swetha ◽  
K V.D.Kiran

The amazing advances of mobile phones enable their wide utilize. Since mobiles are joined with pariah applications, bundles of security and insurance issues are incited. But, current mobile malware analysis and detection advances are as yet flawed, incapable, and incomprehensive. On account of particular qualities of mobiles such as constrained assets, user action and neighborhood correspondence ability, consistent system network, versatile malware detection faces new difficulties, particularly on remarkable runtime malware area. This paper provides overview on  malware classification, methodologies of assessment, analysis and on and off device detection methods on android. The work mainly focuses on different classification algorithms which are used as a part of dynamic malware detection on android.  


Author(s):  
Hongzuo Xu ◽  
Yongjun Wang ◽  
Zhiyue Wu ◽  
Yijie Wang

Non-IID categorical data is ubiquitous and common in realworld applications. Learning various kinds of couplings has been proved to be a reliable measure when detecting outliers in such non-IID data. However, it is a critical yet challenging problem to model, represent, and utilise high-order complex value couplings. Existing outlier detection methods normally only focus on pairwise primary value couplings and fail to uncover real relations that hide in complex couplings, resulting in suboptimal and unstable performance. This paper introduces a novel unsupervised embedding-based complex value coupling learning framework EMAC and its instance SCAN to address these issues. SCAN first models primary value couplings. Then, coupling bias is defined to capture complex value couplings with different granularities and highlight the essence of outliers. An embedding method is performed on the value network constructed via biased value couplings, which further learns high-order complex value couplings and embeds these couplings into a value representation matrix. Bidirectional selective value coupling learning is proposed to show how to estimate value and object outlierness through value couplings. Substantial experiments show that SCAN (i) significantly outperforms five state-of-the-art outlier detection methods on thirteen real-world datasets; and (ii) has much better resilience to noise than its competitors.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xin Ma ◽  
Shize Guo ◽  
Wei Bai ◽  
Jun Chen ◽  
Shiming Xia ◽  
...  

The explosive growth of malware variants poses a continuously and deeply evolving challenge to information security. Traditional malware detection methods require a lot of manpower. However, machine learning has played an important role on malware classification and detection, and it is easily spoofed by malware disguising to be benign software by employing self-protection techniques, which leads to poor performance for existing techniques based on the machine learning method. In this paper, we analyze the local maliciousness about malware and implement an anti-interference detection framework based on API fragments, which uses the LSTM model to classify API fragments and employs ensemble learning to determine the final result of the entire API sequence. We present our experimental results on Ali-Tianchi contest API databases. By comparing with the experiments of some common methods, it is proved that our method based on local maliciousness has better performance, which is a higher accuracy rate of 0.9734.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Enbiao Jing ◽  
Haiyang Zhang ◽  
ZhiGang Li ◽  
Yazhi Liu ◽  
Zhanlin Ji ◽  
...  

Based on a convolutional neural network (CNN) approach, this article proposes an improved ResNet-18 model for heartbeat classification of electrocardiogram (ECG) signals through appropriate model training and parameter adjustment. Due to the unique residual structure of the model, the utilized CNN layered structure can be deepened in order to achieve better classification performance. The results of applying the proposed model to the MIT-BIH arrhythmia database demonstrate that the model achieves higher accuracy (96.50%) compared to other state-of-the-art classification models, while specifically for the ventricular ectopic heartbeat class, its sensitivity is 93.83% and the precision is 97.44%.


Cryptography ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 28
Author(s):  
Hossein Sayadi ◽  
Yifeng Gao ◽  
Hosein Mohammadi Makrani ◽  
Jessica Lin ◽  
Paulo Cesar Costa ◽  
...  

According to recent security analysis reports, malicious software (a.k.a. malware) is rising at an alarming rate in numbers, complexity, and harmful purposes to compromise the security of modern computer systems. Recently, malware detection based on low-level hardware features (e.g., Hardware Performance Counters (HPCs) information) has emerged as an effective alternative solution to address the complexity and performance overheads of traditional software-based detection methods. Hardware-assisted Malware Detection (HMD) techniques depend on standard Machine Learning (ML) classifiers to detect signatures of malicious applications by monitoring built-in HPC registers during execution at run-time. Prior HMD methods though effective have limited their study on detecting malicious applications that are spawned as a separate thread during application execution, hence detecting stealthy malware patterns at run-time remains a critical challenge. Stealthy malware refers to harmful cyber attacks in which malicious code is hidden within benign applications and remains undetected by traditional malware detection approaches. In this paper, we first present a comprehensive review of recent advances in hardware-assisted malware detection studies that have used standard ML techniques to detect the malware signatures. Next, to address the challenge of stealthy malware detection at the processor’s hardware level, we propose StealthMiner, a novel specialized time series machine learning-based approach to accurately detect stealthy malware trace at run-time using branch instructions, the most prominent HPC feature. StealthMiner is based on a lightweight time series Fully Convolutional Neural Network (FCN) model that automatically identifies potentially contaminated samples in HPC-based time series data and utilizes them to accurately recognize the trace of stealthy malware. Our analysis demonstrates that using state-of-the-art ML-based malware detection methods is not effective in detecting stealthy malware samples since the captured HPC data not only represents malware but also carries benign applications’ microarchitectural data. The experimental results demonstrate that with the aid of our novel intelligent approach, stealthy malware can be detected at run-time with 94% detection performance on average with only one HPC feature, outperforming the detection performance of state-of-the-art HMD and general time series classification methods by up to 42% and 36%, respectively.


2020 ◽  
Vol 10 (8) ◽  
pp. 2929 ◽  
Author(s):  
Ibrahem Kandel ◽  
Mauro Castelli

Histopathology is the study of tissue structure under the microscope to determine if the cells are normal or abnormal. Histopathology is a very important exam that is used to determine the patients’ treatment plan. The classification of histopathology images is very difficult to even an experienced pathologist, and a second opinion is often needed. Convolutional neural network (CNN), a particular type of deep learning architecture, obtained outstanding results in computer vision tasks like image classification. In this paper, we propose a novel CNN architecture to classify histopathology images. The proposed model consists of 15 convolution layers and two fully connected layers. A comparison between different activation functions was performed to detect the most efficient one, taking into account two different optimizers. To train and evaluate the proposed model, the publicly available PatchCamelyon dataset was used. The dataset consists of 220,000 annotated images for training and 57,000 unannotated images for testing. The proposed model achieved higher performance compared to the state-of-the-art architectures with an AUC of 95.46%.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Pawel Czarnul ◽  
Jerzy Proficz ◽  
Adam Krzywaniak

The paper presents state of the art of energy-aware high-performance computing (HPC), in particular identification and classification of approaches by system and device types, optimization metrics, and energy/power control methods. System types include single device, clusters, grids, and clouds while considered device types include CPUs, GPUs, multiprocessor, and hybrid systems. Optimization goals include various combinations of metrics such as execution time, energy consumption, and temperature with consideration of imposed power limits. Control methods include scheduling, DVFS/DFS/DCT, power capping with programmatic APIs such as Intel RAPL, NVIDIA NVML, as well as application optimizations, and hybrid methods. We discuss tools and APIs for energy/power management as well as tools and environments for prediction and/or simulation of energy/power consumption in modern HPC systems. Finally, programming examples, i.e., applications and benchmarks used in particular works are discussed. Based on our review, we identified a set of open areas and important up-to-date problems concerning methods and tools for modern HPC systems allowing energy-aware processing.


2021 ◽  
Vol 14 (3) ◽  
pp. 1-28
Author(s):  
Abeer Al-Hyari ◽  
Hannah Szentimrey ◽  
Ahmed Shamli ◽  
Timothy Martin ◽  
Gary Gréwal ◽  
...  

The ability to accurately and efficiently estimate the routability of a circuit based on its placement is one of the most challenging and difficult tasks in the Field Programmable Gate Array (FPGA) flow. In this article, we present a novel, deep learning framework based on a Convolutional Neural Network (CNN) model for predicting the routability of a placement. Since the performance of the CNN model is strongly dependent on the hyper-parameters selected for the model, we perform an exhaustive parameter tuning that significantly improves the model’s performance and we also avoid overfitting the model. We also incorporate the deep learning model into a state-of-the-art placement tool and show how the model can be used to (1) avoid costly, but futile, place-and-route iterations, and (2) improve the placer’s ability to produce routable placements for hard-to-route circuits using feedback based on routability estimates generated by the proposed model. The model is trained and evaluated using over 26K placement images derived from 372 benchmarks supplied by Xilinx Inc. We also explore several opportunities to further improve the reliability of the predictions made by the proposed DLRoute technique by splitting the model into two separate deep learning models for (a) global and (b) detailed placement during the optimization process. Experimental results show that the proposed framework achieves a routability prediction accuracy of 97% while exhibiting runtimes of only a few milliseconds.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2031 ◽  
Author(s):  
Taimoor Shakeel Sheikh ◽  
Yonghee Lee ◽  
Migyung Cho

Diagnosis of pathologies using histopathological images can be time-consuming when many images with different magnification levels need to be analyzed. State-of-the-art computer vision and machine learning methods can help automate the diagnostic pathology workflow and thus reduce the analysis time. Automated systems can also be more efficient and accurate, and can increase the objectivity of diagnosis by reducing operator variability. We propose a multi-scale input and multi-feature network (MSI-MFNet) model, which can learn the overall structures and texture features of different scale tissues by fusing multi-resolution hierarchical feature maps from the network’s dense connectivity structure. The MSI-MFNet predicts the probability of a disease on the patch and image levels. We evaluated the performance of our proposed model on two public benchmark datasets. Furthermore, through ablation studies of the model, we found that multi-scale input and multi-feature maps play an important role in improving the performance of the model. Our proposed model outperformed the existing state-of-the-art models by demonstrating better accuracy, sensitivity, and specificity.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 427
Author(s):  
Hua Zheng ◽  
Yu Gu

The accurate and effective classification of household solid waste (HSW) is an indispensable component in the current procedure of waste disposal. In this paper, a novel ensemble learning model called EnCNN-UPMWS, which is based on convolutional neural networks (CNNs) and an unequal precision measurement weighting strategy (UPMWS), is proposed for the classification of HSW via waste images. First, three state-of-the-art CNNs, namely GoogLeNet, ResNet-50, and MobileNetV2, are used as ingredient classifiers to separately predict and obtain three predicted probability vectors, which are significant elements that affect the prediction performance by providing complementary information about the patterns to be classified. Then, the UPMWS is introduced to determine the weight coefficients of the ensemble models. The actual one-hot encoding labels of the validation set and the predicted probability vectors from the CNN ensemble are creatively used to calculate the weights for each classifier during the training phase, which can bring the aggregated prediction vector closer to the target label and improve the performance of the ensemble model. The proposed model was applied to two datasets, namely TrashNet (an open-access dataset) and FourTrash, which was constructed by collecting a total of 47,332 common HSW images containing four types of waste (wet waste, recyclables, harmful waste, and dry waste). The experimental results demonstrate the effectiveness of the proposed method in terms of its accuracy and F1-scores. Moreover, it was found that the UPMWS can simply and effectively enhance the performance of the ensemble learning model, and has potential applications in similar tasks of classification via ensemble learning.


Sign in / Sign up

Export Citation Format

Share Document