scholarly journals Preparation, Antimicrobial Activity and Docking Study of Vanadium Mixed Ligand Complexes Containing 4-Amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol and Aminophenol Derivatives

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1008
Author(s):  
Doaa Domyati ◽  
Sami A. Zabin ◽  
Ahmed A. Elhenawy ◽  
Mohamed Abdelbaset

The synthesis of mixed-ligand complexes is considered an important strategy for developing new metal complexes of enhanced biological activity. This paper presents the synthesis, characterization, in vitro antimicrobial assessment, and theoretical molecular docking evaluation for synthesized oxidovanadium (V) complexes. The proposed structures of the synthesized compounds were proved using elemental and different spectroscopic analysis. The antimicrobial tests showed moderate activity of the compounds against the Gram-positive bacterial strains and the fungal yeast, whereas no activity was observed against the Gram-negative bacterial strains. The performance of density functional theory (DFT) was conducted to study the interaction mode of the targeted compounds with the biological system. Calculating the quantitative structure-activity relationship (QSPR) was performed depending on optimization geometries, frontier molecular orbitals (FMOs), and chemical reactivities for synthesized compounds. The molecular electrostatic potentials (MEPs) that were plotted link the interaction manner of synthesized compounds with the receptor. The molecular docking evaluation revealed that the examined compounds may possess potential antibacterial activity.

2021 ◽  
Vol 32 (1) ◽  
pp. 6-21
Author(s):  
Jannatul Maowa ◽  
Asraful Alam ◽  
Kazi M. Rana ◽  
Sujan Dey ◽  
Anowar Hosen ◽  
...  

Abstract Nucleosides and their analogues are an important, well-established class of clinically useful medicinal agents that exhibit antiviral and anticancer activity. Thus, our research group has focused on the synthesis of new nucleoside derivatives that could be tested for their broad-spectrum biological activity. In this study, two new series of nucleoside derivatives were synthesized from uridine (1) through facile two-step reactions using the direct acylation method, affording 5’-O-acyl uridine derivatives in good yields. The isolated uridine analogs were further transformed into two series of 2’,3’-di-O-acyl derivatives bearing a wide variety of functionalities in a single molecular framework to evaluate their antimicrobial activity. The new synthesized compounds were characterized through physicochemical, elemental and spectroscopic analysis, and all were screened for their in vitro antimicrobial activity against selected human and plant pathogenic strains. The test compounds revealed moderate to good antibacterial and antifungal activities and were more effective against fungal phytopathogens than against bacterial strains, while many of them exhibited better antimicrobial activity than standard antibiotics. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests against all microorganisms were also conducted for five compounds based on their activity (6, 11, 13, 16, and 17). In addition, all the derivatives were optimized using density functional theory (DFT) B3LYP/6-31g+(d,p) calculations to elucidate their thermal and molecular orbital properties. A molecular docking study was performed using the human protein 5WS1 to predict their binding affinity and modes, and ADMET and SwissADME calculations confirmed the improved pharmacokinetic properties of the compounds. Besides, structure–activity relationship (SAR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) studies were also performed. Thus, the improvement of the bioactivity of these compounds is expected to significantly contribute to the design of more antimicrobial agents for therapeutic use in the future.


2020 ◽  
Vol 32 (6) ◽  
pp. 1482-1490
Author(s):  
Manju Mathew ◽  
Raja Chinnamanayakar ◽  
Ezhilarasi Muthuvel Ramanathan

A series of 1-(5-(5-(4-chlorophenyl)furan-2-yl)-4,5-dihyropyrazol-1-yl ethanone (5a-h) was synthesized through E-(3-(5-(4-chloro-phenyl)furan-2-yl)-1-phenylprop-2-en-1-one (3a-h) with hydrazine monohydrate and sodium acetate. Totally, eight compounds were synthesized and their structures were elucidated by infrared, 1H & 13C NMR, elemental analysis, antimicrobial studies, in silico molecular docking studies and also in silico ADME prediction. Antimicrobial studies of the synthesized compounds showed good to moderate activity against the all the stains compared with standard drugs. in silico Molecular docking study was carried out using bacterial protein and BC protein. Synthesized compounds (5a-h) showed good docking score compared with ciprofloxacin. Antimicrobial study was carried out for 4-chlorophenyl furfuran pyrazole derivatives (5a-h). The results of assessment of toxicities, drug likeness and drug score profiles of compounds (5a-j) are promising


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4817
Author(s):  
Huda R. M. Rashdan ◽  
Ihsan A. Shehadi ◽  
Mohamad T. Abdelrahman ◽  
Bahaa A. Hemdan

In this study, a new synthetic 1,2,3-triazole-containing disulfone compound was derived from dapsone. Its chemical structure was confirmed using microchemical and analytical data, and it was tested for its in vitro antibacterial potential. Six different pathogenic bacteria were selected. MICs values and ATP levels were determined. Further, toxicity performance was measured using MicroTox Analyzer. In addition, a molecular docking study was performed against two vital enzymes: DNA gyrase and Dihydropteroate synthase. The results of antibacterial abilities showed that the studied synthetic compound had a strong bactericidal effect against all tested bacterial strains, as Gram-negative species were more susceptible to the compound than Gram-positive species. Toxicity results showed that the compound is biocompatible and safe without toxic impact. The molecular docking of the compound showed interactions within the pocket of two enzymes, which are able to stabilize the compound and reveal its antimicrobial activity. Hence, from these results, this study recommends that the established compound could be an outstanding candidate for fighting a broad spectrum of pathogenic bacterial strains, and it might therefore be used for biomedical and pharmaceutical applications.


2021 ◽  
Author(s):  
MD MUSHTAQUE ◽  
Fernando Avecilla ◽  
Mariyam Jahan ◽  
Irfan Ahmad ◽  
Mohd Saeed ◽  
...  

Abstract A derivative of 4-Thiazolidinone derivative endowing cyclopropyl ring substituted at 3-nitrogen positioned was synthesized that was further evaluated against cancerous cell lines MCF-7. The structure of synthesized compound (6) was well characterized by different spectral techniques such as FT-IR, UV-Visible, 1H-NMR, 13C-NMR and mass spectrophotometer. X-ray single crystal structure and Computational study (DFT) study revealed that compound (6) adopted (2Z, 5Z)-configuration. Preliminary In vitro study suggested that compound (6) displayed moderate activity bearing IC50(161.0 μM). The DNA binding studies (Ct-DNA) with compound (6) was performed. The study suggested that bound with DNA exhibiting binding constant Kb = 3.3 x 104 LMol-1). Furthermore, the binding study was complemented by Molecular docking possessingDNA binding studies (Ct-DNA) were performed. Final compound (6) exhibited moderate cytotoxicity effect (IC50 = 161.0 μM) and DNA binding ability (Kb = 3.3 x 104 LMol-1). The experimental findings were completed by molecular docking study.


2020 ◽  
Vol 10 (12) ◽  
pp. 4062 ◽  
Author(s):  
Evelina Polmickaitė-Smirnova ◽  
Jonas Šarlauskas ◽  
Kastis Krikštopaitis ◽  
Živilė Lukšienė ◽  
Zita Staniulytė ◽  
...  

The antitumor drug 3-amino-1,2,4-benzotriazine-1,4-dioxide (tirapazamine, TPZ (1)) along with a number of newly synthesized tirapazamine derivatives (TPZs) bearing substitutions at the 3-amine position of TPZ (1) were estimated for their antibacterial activity against representative Gram-negative Escherichia coli (ATCC 25922) and Salmonella enterica (SL 5676), as well as Gram-positive Staphylococcus aureus (ATCC 25923) bacterial strains. Their activities in terms of minimum inhibitory concentrations (MICs) varied in the range of 1.1 µM (0.25 µg/mL)–413 µM (128 µg/mL). Amongst the most potent derivatives (1–6), acetyl- and methoxycarbonyl-substituted TPZs (2 and 4) were the strongest agents, which exhibited approximately 4–30 fold greater activities compared to those of TPZ (1) along with the reference drugs chloramphenicol (CAM) and nitrofurantoin (NFT). The inhibitory activities of the compounds were highly impacted by their structural features. No reliable relationships were established between activities and the electron-accepting potencies of the whole set of studied compounds, while the activities of TPZ drug (1) and the structurally uniform set of molecules (2–6) were found to increase with an increase in their electron-accepting potencies obtained by means of density functional theory (DFT) computation. A greater steric, lipophilic and polar nature of the substituents led to a lower activity of the compounds. The combined antibacterial in vitro trial gave clear evidence that TPZs coupled with the commonly utilized antibiotics ciprofloxacin (Cipro) and nitrofurantoin (NFT) could generate enhanced (suggestive of partial and virtually complete synergistic) and additive effects. The strongest effects were defined for TPZs–NFT combinations, which resulted in a notable reduction in the MICs of di-N-oxides. These preliminary findings suggest that the synthesized novel di-N-oxides might be used as sole agents or applied as antibiotic complements.


2018 ◽  
Vol 7 (5) ◽  
pp. 370-385 ◽  
Author(s):  
Modather F Hussein

In this study, the novel hybrids sulfonamide carbamates were synthesized by treatment of N-substituted 4-isothiocyanatophenyl sulfonamides with ethyl carbamate in dry 1,4-dioxane at reflux temperature in the presence of triethylamine. Also, treatment of Phenylacetylisothiocyanate with sulfanilamide in refluxing acetonitrile afforded the corresponding hybrid sulfonamide acylthiourea derivatives. The anti-microbial activities of the synthesized compounds were evaluated. Ethyl ({4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl)-phenyl]carbamothioyl)- carbamate and 2-Phenyl-N-((4-(N-thiazol-2-yl)sulfamoyl)-phenyl)carbamothioyl)-acetamide exhibited the best activity against tested bacteria. Molecular docking studies for the final compounds were performed using the Open Eye docking suite. Moreover, Ligand efficiency (LE) and lipophilic ligand efficiency (LLE) parameters for Ethyl ({4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl)phenyl]carbamothioyl)-carbamate and 2-Phenyl-N-((4-(N-thiazol-2- yl)sulfamoyl)phenyl)carb-amothioyl)acetamide were evaluated. Quantum chemical calculations based on density functional theory (DFT) have been performed.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Md. Abu Saleh ◽  
Md. Solayman ◽  
Mohammad Mazharol Hoque ◽  
Mohammad A. K. Khan ◽  
Mohammed G. Sarwar ◽  
...  

In this study, mitoxantrone and its halogenated derivatives have been designed by density functional theory (DFT) to explore their structural and thermodynamical properties. The performance of these drugs was also evaluated to inhibit DNA topoisomerase type IIα(TOP2A) by molecular docking calculation. Noncovalent interactions play significant role in improving the performance of halogenated drugs. The combined quantum and molecular mechanics calculations revealed that CF3containing drug shows better preference in inhibiting the TOP2A compared to other modified drugs.


Sign in / Sign up

Export Citation Format

Share Document