scholarly journals Novel Correlations between Spectroscopic and Morphological Properties of Activated Carbons from Waste Coffee Grounds

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1637
Author(s):  
Egle Rosson ◽  
Paolo Sgarbossa ◽  
Mirto Mozzon ◽  
Federico Venturino ◽  
Sara Bogialli ◽  
...  

Massive quantities of spent coffee grounds (SCGs) are generated by users around the world. Different processes have been proposed for SCG valorization, including pyrolytic processes to achieve carbonaceous materials. Here, we report the preparation of activated carbons through pyrolytic processes carried out under different experimental conditions and in the presence of various porosity activators. Textural and chemical characterization of the obtained carbons have been achieved through Brunauer–Emmett–Teller (BET), ESEM, 13C solid state NMR, XPS, XRD, thermogravimetric and spectroscopic determinations. The aim of the paper is to relate these data to the preparation method, evaluating the correlation between the spectroscopic data and the physical and textural properties, also in comparison with the corresponding data obtained for three commercial activated carbons used in industrial adsorption processes. Some correlations have been observed between the Raman and XPS data.

2014 ◽  
Vol 9 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Rajeshwar M. Shrestha ◽  
Margit Varga ◽  
Imre Varga ◽  
Amar P. Yadav ◽  
Bhadra P. Pokharel ◽  
...  

Activated carbons were prepared from Lapsi seed stone by the treatment with H2SO4 and HNO3 for the removal of Ni (II) ions from aqueous solution. Two activated carbon have been prepared from Lapsi seed stones by treating with conc.H2SO4 and a mixture of H2SO4 and HNO3 in the ratio of 1:1 by weight for removal of Ni(II) ions. Chemical characterization of the resultant activated carbons was studied by Fourier Transform Infrared Spectroscopy and Boehm titration which revealed the presence of oxygen containing surface functional groups like carboxyl, lactones and phenols in the carbons. The optimum pH for nickel adsorption is found to be 5. The adsorption data were better fitted with the Langmuir equations than Freundlich adsorption equation to describe the equilibrium isotherms. The maximum adsorption capacity of Ni (II) on the resultant activated carbons was 28.25.8 mg g-1 with H2SO4 and 69.49 mg g-1 with a mixture of H2SO4 and HNO3. The waste material used in the preparation of the activated carbons is inexpensive and readily available. Hence the carbons prepared from Lapsi seed stones can act as potential low cost adsorbents for the removal of Ni (II) from water. DOI: http://dx.doi.org/10.3126/jie.v9i1.10680Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 166–174


Author(s):  
Jorge Bedia ◽  
Manuel Peñas-Garzón ◽  
Almudena Goméz-Avilés ◽  
Juan José Rodríguez ◽  
Carolina Belver

This review analyzes the synthesis and characterization of biomass-derived carbons for adsorption of emerging contaminants from water. The study begins with the definition and different types of emerging contaminants more often founded in water streams and the different technologies available for their removal including adsorption. It also describes the biomass sources that could be used for the synthesis of biochars and activated carbons. The characterization of the adsorbents and the different approaches that could be employed for the study of the adsorption processes are also detailed. Finally, the work reviews in detail some studies of the literature focused on the adsorption of emerging contaminants on biochars and activated carbons synthesized from biomass precursors.


2018 ◽  
Vol 4 (4) ◽  
pp. 63 ◽  
Author(s):  
Jorge Bedia ◽  
Manuel Peñas-Garzón ◽  
Almudena Gómez-Avilés ◽  
Juan Rodriguez ◽  
Carolina Belver

This review analyzes the preparation and characterization of biomass-derived carbons and their application as adsorbents of emerging contaminants from water. The study begins by identifying the different types of emerging contaminants more often found in water streams, including a brief reference to the available technologies for their removal. It also describes the biomass sources that could be used for the synthesis of biochars and activated carbons (AC). The characterization of the adsorbents and the different approaches that can be followed to learn about the adsorption processes are also detailed. Finally, the work reviews literature studies focused on the adsorption of emerging contaminants on biochars and activated carbons synthesized from biomass precursors.


2017 ◽  
Vol 65 (13) ◽  
pp. 2784-2792 ◽  
Author(s):  
Tian Tian ◽  
Samara Freeman ◽  
Mark Corey ◽  
J. Bruce German ◽  
Daniela Barile

2014 ◽  
Vol 68 (7) ◽  
Author(s):  
Márcia Silva ◽  
Saloana Gomes ◽  
Maria Fonseca ◽  
Kaline Sousa ◽  
José Espínola ◽  
...  

AbstractClay mineral containing kaolinite, illite and montmorillonite was organofunctionalized with silylating agents: (3-aminopropyl)triethoxysilane, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane and (3-mercaptopropyl)trimethoxy-silane, to yield three hybrids labelled Clay1, Clay2 and Clay3, respectively. These solids were characterized using elemental analysis, thermogravimetry, X-ray diffractometry, infrared spectroscopy, scanning electron micrograph, and 29Si and 27Al solid state NMR. Immobilized quantities of the organic groups were 0.66 mmol g−1, 0.48 mmol g−1 and 0.88 mmol g−1 for Clayx (x = 1–3), respectively. X-ray diffraction patterns confirmed the immobilization of silanes onto the surface without changes in the textural properties of the clay mineral as noted from the SEM images. Spectroscopic measurements were in agreement with the covalent bonding between the silanes and the hydroxyl groups deposited on the surface. The new hybrids were utilized as adsorbents of cobalt in aqueous solution, with retention values of 0.78 mmol g−1, 1.1 mmol g−1 and 0.70 mmol g−1 for Clayx (x = 1–3), respectively.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7448
Author(s):  
Adrianna Kamińska ◽  
Piotr Miądlicki ◽  
Karolina Kiełbasa ◽  
Marcin Kujbida ◽  
Joanna Sreńscek-Nazzal ◽  
...  

This work presents studies on the preparation of porous carbon materials from waste biomass in the form of orange peels, coffee grounds, and sunflower seed husks. The preparation of activated carbons from these three waste materials involved activation with KOH followed by carbonization at 800 °C in an N2 atmosphere. This way of obtaining the activated carbons is very simple and requires the application of only two reactants. Thus, this method is cheap, and it does not generate much chemical waste. The obtained activated carbons were characterized by XRD, SEM, XPS, and XRF methods. Moreover, the textural properties, acidity, and catalytic activity of these materials were descried. During catalytic tests carried out in the alpha-pinene isomerization process (the use of the activated carbons thus obtained in the process of alpha-pinene isomerization has not been described so far), the most active were activated carbons obtained from coffee grounds and orange peels. Generally, the catalytic activity of the obtained materials depended on the pore size, and the most active activated carbons had more pores with sizes of 0.7–1.0 and 1.1–1.4 nm. Moreover, the presence of potassium and chlorine ions in the pores may also be of key importance for the alpha-pinene isomerization process. On the other hand, the acidity of the surface of the tested active carbons did not affect their catalytic activity. The most favorable conditions for carrying out the alpha-pinene isomerization process were the same for the three tested activated carbons: temperature 160 °C, amount of the catalyst 5 wt.%, and reaction time 3 h. Kinetic studies were also carried out for the three tested catalysts. These studies showed that the isomerization over activated carbons from orange peels, coffee grounds, and sunflower seed husks is a first-order reaction.


2013 ◽  
Vol 856 ◽  
pp. 69-73 ◽  
Author(s):  
Cibele C.O. Alves ◽  
Pablo D. Rocha ◽  
Adriana S. Franca ◽  
Leandro S. Oliveira

This paper presents a comparative evaluation of three lignocellulosic residues (corn cobs, spent coffee grounds and Raphanus sativus press cake) as precursor materials in the production of activated carbons (ACs). Results indicate that the precursor material has a significant effect in both physical and chemical aspects of the adsorbent as well as on the adsorption mechanisms. Highest and lowest values of iodine number and density were observed for ACs based on press cake and corn cobs, respectively. Regardless of the observed differences in surface chemical make-up and adsorption mechanisms, all employed materials were deemed adequate for adsorbent production, since the prepared ACs presented adsorption capacities similar or even higher than those of commercial ACs and other residue-based adsorbents.


2020 ◽  
Vol 6 (3) ◽  
pp. 45 ◽  
Author(s):  
Elisabetta M. Cepollaro ◽  
Domenico Caputo ◽  
Stefano Cimino ◽  
Nicola Gargiulo ◽  
Luciana Lisi

Polymerization of furfuryl alcohol carried out using ZnCl2 or CuCl2 as Lewis acid activators was investigated by exploring various synthesis parameters in order to produce activated carbons with different porosity and metal load. The temperature of polymerization was changed according to Lewis acidity strength of the two metal chlorides: 0 °C for CuCl2 and 80 °C for ZnCl2. The polymer obtained was pyrolyzed under pure He flow or under 1000 ppm O2/He flow at 600 or 850 °C in order to produce activated carbons with specific textural features. The load and nature of the residual metal after pyrolysis were determined by ICP and XRD analyses, respectively. Copper was mostly preserved even at high pyrolysis temperature in contrast to zinc, which was almost totally lost at 850 °C. A foamy structure was detected by SEM analysis for all samples. Textural properties were determined by both N2 and CO2 physisorption; surface areas and pore size distributions were evaluated according to BET, DFT and DR models. The polymerization activated by ZnCl2 produced carbons with larger surface areas were also related to the presence of some mesopores, whereas CuCl2 promoted the prevailing formation of narrow micropores, making these materials particularly suited to H2 storage applications.


2013 ◽  
Vol 446-447 ◽  
pp. 201-205 ◽  
Author(s):  
Sara Faiz Hanna Tasfy ◽  
Noor Asmawati Mohd Zabidi ◽  
Duvvuri Subbarao ◽  
Maizatul Shima Shaharun

Due to the growing interest in using mesoporous materials as catalytic support, this paper presents the synthesis and characterization of mesoporous silica (SBA-15) prepared under different synthesis conditions. Variables studied were acidity of the synthesis duration, synthesis sol, aging duration, and washing solvent. The influence of these parameters on the textural properties and morphology of the mesoporous silica is reported. Increasing the sol acidity changed the shape of the particles from cylindrical (fiber) to spherical.


2020 ◽  
Vol 10 (4) ◽  
pp. 20200015 ◽  
Author(s):  
Weichen Sun ◽  
Zongjun Yin ◽  
John A. Cunningham ◽  
Pengju Liu ◽  
Maoyan Zhu ◽  
...  

The challenge of identifying fossilized organelles has long hampered attempts to interpret the fossil record of early eukaryote evolution. We explore this challenge through experimental taphonomy of nuclei in a living eukaryote and microscale physical and chemical characterization of putative nuclei in embryo-like fossils from the early Ediacaran Weng'an Biota. The fossil nuclei exhibit diverse preservational modes that differ in shape, presence or absence of an inner body and the chemistry of the associated mineralization. The nuclei are not directly fossilized; rather, they manifest as external moulds. Experimental taphonomy of epidermal cells from the common onion ( Allium cepa ) demonstrates that nuclei are more decay resistant than their host cells, generally maintaining their physical dimensions for weeks to months post-mortem, though under some experimental conditions they exhibit shrinkage and/or become shrouded in microbial biofilms. The fossil and experimental evidence may be rationalized in a single taphonomic pathway of selective mineralization of the cell cytoplasm, preserving an external mould of the nucleus that is itself resistant to both decay and mineral replication. Combined, our results provide both a secure identification of the Weng'an nuclei as well as the potential of a fossil record of organelles that might help arbitrate in long-standing debates over the relative and absolute timing of the evolutionary assembly of eukaryote-grade cells.


Sign in / Sign up

Export Citation Format

Share Document