scholarly journals Immunological Analytical Techniques for Cosmetics Quality Control and Process Monitoring

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1982
Author(s):  
Martina Zangheri ◽  
Maria Maddalena Calabretta ◽  
Donato Calabria ◽  
Jessica Fiori ◽  
Massimo Guardigli ◽  
...  

Cosmetics analysis represents a rapidly expanding field of analytical chemistry as new cosmetic formulations are increasingly in demand on the market and the ingredients required for their production are constantly evolving. Each country applies strict legislation regarding substances in the final product that must be prohibited or regulated. To verify the compliance of cosmetics with current regulations, official analytical methods are available to reveal and quantitatively determine the analytes of interest. However, since ingredients, and the lists of regulated/prohibited substances, rapidly change, dedicated analytical methods must be developed ad hoc to fulfill the new requirements. Research focuses on finding innovative techniques that allow a rapid, inexpensive, and sensitive detection of the target analytes in cosmetics. Among the different methods proposed, immunological techniques are gaining interest, as they make it possible to carry out low-cost analyses on raw materials and finished products in a relatively short time. Indeed, immunoassays are based on the specific and selective antibody/antigen reaction, and they have been extensively applied for clinical diagnostic, alimentary quality control and environmental security purposes, and even for routine analysis. Since the complexity and variability of the matrices, as well as the great variety of compounds present in cosmetics, are analogous with those from food sources, immunological methods could also be applied successfully in this field. Indeed, this would provide a valid approach for the monitoring of industrial production chains even in developing countries, which are currently the greatest producers of cosmetics and the major exporters of raw materials. This review aims to highlight the immunological techniques proposed for cosmetics analysis, focusing on the detection of prohibited/regulated compounds, bacteria and toxins, and allergenic substances, and the identification of counterfeits.

Author(s):  
Salman Mau ◽  
Shakir Saleem ◽  
Vishwadeepak Kimothi ◽  
Vineet Joshi ◽  
Sanjay Singh

Diabetes mellitus is one of the most common metabolic disorders associated with disturbed hormonal secretion. Diabetes is characterized by high blood glucose levels over a prolonged period of time. High sugar levels are due to abnormal metabolism of carbohydrates and lipids which is caused by absolute or relative insulin deficiency. Herbal medicines have been the highly esteemed source of medicine throughout the human history. Herbs are becoming more popular today because of their least side effects, holistic beliefs, easy availability and low cost. Individual herbal products and formulations are gaining popularity because of their quality manufacturing using modern analytical techniques and standardized raw materials. Herbal drugs are widely used for the treatment of diabetes worldwide in various dosage forms. India has a long list of native herbal drugs with scientifically proven blood sugar lowering properties. The seeds of Nigella sativa, Olea europaea, fruits of Aegle marmelos, Momordica charantia, Coccinia indica, Nigella sativa,Gymnema sylvestre leaves,whole plant of Pterocarpus marsupium, Syzygium cumini fruits, Swertia punicea, Urtica dioica, gum of Ferula assa-foetida and seeds of Trigonella foenum graecum were discussed along with their reported mechanisms of action. In this review paper an attempt has been made to give an overview of certain Indian plants which have shown their anti-diabetic activity in various pre-clinical studies.


Author(s):  
Luana Santos ◽  
Sheisi Rocha ◽  
Cristina Barra ◽  
Matthieu Tubino ◽  
José Rocha Junior

Glycerol can be determined in several products by various analytical techniques. Titrimetric ones have stood out for their low cost, being recommended as standards. However, reliable, simple, fast, and green methods with low quantification limits are still needed. Titration of glycerol is based on its oxidation by periodate (Malaprade reaction) producing formic acid, formic aldehyde, and iodate. Iodate and periodate are iodometrically titrated, but mutual interference between these ions has produced methods with some drawbacks. Here is proposed to mask periodate with molybdate, to eliminate interference, determining the glycerol content through iodate, employing iodometric titration. Solutions containing from 10 to 1000 μg of glycerol were analyzed (error < 3.4%). The method was successfully applied for the determination of glycerol in biodiesels from different raw materials. Recoveries were from 92.9 ± 0.4 to 111 ± 3%. Semi-micro extraction was done, providing a fast procedure for determining free glycerol in biodiesel (< 10 min).


Tequio ◽  
2019 ◽  
Vol 2 (6) ◽  
pp. 5-16
Author(s):  
Araceli Pérez Vásquez ◽  
Erika Vivani Castuillejos Ramírez ◽  
Jakziri Guadalupe Pérez Herrera

Mexico is a country with a long tradition in the consumption of medicinal plants. However, there is still a lot to do regarding its regulation and protection, since a huge number of plants used in traditional Mexican medicines are subject to an active national and international trade, thus constituting a highly demanding global market. In this context, the medicinal plants that constitute one part of herbal products -as raw materials- or the main part -with its raw material-, must undergo a rigorous assessing by using analytical techniques in compliance with the sanitary regulations in force, to establish their identity, purity and content. All these test procedures are the basis of quality control for herbal drugs. From a sustainability perspective, quality control is aimed to contribute to the conservation, management and use of endangered plant species or threatened species that have high commercial demand in the population.


2018 ◽  
Author(s):  
Rizki Eka Putri ◽  
Denny Darlis

This article was under review for ICELTICS 2018 -- In the medical world there is still service dissatisfaction caused by lack of blood type testing facility. If the number of tested blood arise, a lot of problems will occur so that electronic devices are needed to determine the blood type accurately and in short time. In this research we implemented an Artificial Neural Network on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board to identify the blood type. This research uses blood sample image as system input. VHSIC Hardware Discription Language is the language to describe the algorithm. The algorithm used is feed-forward propagation of backpropagation neural network. There are 3 layers used in design, they are input, hidden1, and output. At hidden1layer has two neurons. In this study the accuracy of detection obtained are 92%, 92%, 92%, 90% and 86% for 32x32, 48x48, 64x64, 80x80, and 96x96 pixel blood image resolution, respectively.


Author(s):  
Yasunobu Iwai ◽  
Koichi Shinozaki ◽  
Daiki Tanaka

Abstract Compared with space parts, consumer parts are highly functional, low cost, compact and lightweight. Therefore, their increased usage in space applications is expected. Prior testing and evaluation on space applicability are necessary because consumer parts do not have quality guarantees for space application [1]. However, in the conventional reliability evaluation method, the test takes a long time, and the problem is that the robustness of the target sample can’t be evaluated in a short time. In this report, we apply to the latest TSOP PEM (Thin Small Outline Package Plastic Encapsulated Microcircuit) an evaluation method that combines preconditioning and HALT (Highly Accelerated Limit Test), which is a test method that causes failures in a short time under very severe environmental conditions. We show that this method can evaluate the robustness of TSOP PEMs including solder connections in a short time. In addition, the validity of this evaluation method for TSOP PEM is shown by comparing with the evaluation results of thermal shock test and life test, which are conventional reliability evaluation methods.


2020 ◽  
Vol 4 (1) ◽  
pp. 41-48
Author(s):  
Teodoro Astorga Amatosa ◽  
Michael E. Loretero

Bamboo is a lightweight and high-strength raw materials that encouraged researchers to investigate and explore, especially in the field of biocomposite and declared as one of the green-technology on the environment as fully accountable as eco-products. This research was to assess the technical feasibility of making single-layer experimental Medium-Density Particleboard panels from the bamboo waste of a three-year-old (Dendrocalamus asper). Waste materials were performed to produce composite materials using epoxy resin (C21H25C105) from a natural treatment by soaking with an average of pH 7.6 level of sea-water. Three different types of MDP produced, i.e., bamboo waste strip MDP (SMDP), bamboo waste chips MDP (CMDP) and bamboo waste mixed strip-chips MDP (MMDP) by following the same process. The experimental panels tested for their physical-mechanical properties according to the procedures defined by ASTM D1037-12. Conclusively, even the present study shows properties of MDP with higher and comparable to other composite materials; further research must be given better attention as potential substitute to be used as hardwood materials, especially in the production, design, and construction usage.


2019 ◽  
Author(s):  
Yu Wang ◽  
Nachuan Yang ◽  
Yi Shuai ◽  
Yunpeng Zhang ◽  
Kanghua Chen

2020 ◽  
Vol 17 (5) ◽  
pp. 382-388
Author(s):  
Aparna Wadhwa ◽  
Faraat Ali ◽  
Sana Parveen ◽  
Robin Kumar ◽  
Gyanendra N. Singh

Objective: The main aim of the present work is to synthesize chloramphenicol impurity A (CLRMIMP- A) in the purest form and its subsequent characterization by using a panel of sophisticated analytical techniques (LC-MS, DSC, TGA, NMR, FTIR, HPLC, and CHNS) to provide as a reference standard mentioned in most of the international compendiums, including IP, BP, USP, and EP. The present synthetic procedure has not been disclosed anywhere in the prior art. Methods: A simple, cheaper, and new synthesis method was described for the preparation of CLRM-IMP-A. It was synthesized and characterized by FTIR, DSC, TGA, NMR (1H and 13C), LC-MS, CHNS, and HPLC. Results: CLRM-IMP-A present in drugs and dosage form can alter the therapeutic effects and adverse reaction of a drug considerably, it is mandatory to have a precise method for the estimation of impurities to safeguard the public health. Under these circumstances, the presence of CLRM-IMP-A in chloramphenicol (CLRM) requires strict quality control to satisfy the specified regulatory limit. The synthetic impurity obtained was in the pure form to provide a certified reference standard or working standard to stakeholders with defined potency. Conclusion: The present research describes a novel technique for the synthesis of pharmacopoeial impurity, which can help in checking/controlling the quality of the CLRM in the international markets.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Cheng-An Tao ◽  
Jian-Fang Wang

Metal-organic frameworks (MOFs) have been used in adsorption, separation, catalysis, sensing, photo/electro/magnetics, and biomedical fields because of their unique periodic pore structure and excellent properties and have become a hot research topic in recent years. Ball milling is a method of small pollution, short time-consumption, and large-scale synthesis of MOFs. In recent years, many important advances have been made. In this paper, the influencing factors of MOFs synthesized by grinding were reviewed systematically from four aspects: auxiliary additives, metal sources, organic linkers, and reaction specific conditions (such as frequency, reaction time, and mass ratio of ball and raw materials). The prospect for the future development of the synthesis of MOFs by grinding was proposed.


Sign in / Sign up

Export Citation Format

Share Document