scholarly journals The Use of Zeta Potential Measurement in Surface Water Coagulation Process Optimization

Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 21
Author(s):  
Mroczko ◽  
Zimoch

The object of the research was surface water taken directly from the Mała Panew river. Zeta potential was measured in dependence of the inflicted coagulant dose. Four types of aluminum-based coagulants were used in this research: aluminum sulfate (Alum), polyaluminum chloride (PAC), dialuminum chloride pantahydroxide (PACl), and polyaluminum chloride hydroxide sulfate (PACS). Effective coagulant doses were selected on the basis of the zeta isoelectric point (IP) analysis. Coagulation efficiency analysis was based on the parameters of treated water (pH, turbidity, color, alkalinity), reduction of organic matter (Abs254, Total Organic Carbon (TOC) and Disolved Organic Carbon (DOC)), and residual aluminum contamination.

1979 ◽  
Vol 36 (6) ◽  
pp. 678-682 ◽  
Author(s):  
F. C. Tan ◽  
P. M. Strain

Sixteen offshore surface samples within the Gulf of St. Lawrence show low δ13C values and are similar to eight offshore surface samples collected seaward of the Gulf of St. Lawrence. The δ13C surface values are consistent with δ13C values in plankton produced at the temperature found in the euphotic zone in the study area. Higher values are observed in four surface samples from the mouth of the St. Lawrence Estuary and probably result from high carbon demand during periods of high biological productivity. Lower values found in seven deep POC samples indicate changes in the nature of the POC caused by biological degradation of the organic matter. Significant differences (2–6‰) between the uniformly high δ13C values of the organic carbon in surface sediments and the low values of near-bottom water POC have been observed. The similarity between the δ13C values of surface water POC and the surface sediments suggest that surface water POC is an important source of organic carbon in surface sediments. Several observations of large vertical δ13C gradients in deep water POC suggest the presence of resuspended sediments 30–60 m above the sediment–water interface. Key words: particulate organic matter, carbon isotope ratios, isotope fractionation, sediment resuspension, sediment sources, Gulf of St. Lawrence


2011 ◽  
Vol 8 (7) ◽  
pp. 1865-1879 ◽  
Author(s):  
E. S. Karlsson ◽  
A. Charkin ◽  
O. Dudarev ◽  
I. Semiletov ◽  
J. E. Vonk ◽  
...  

Abstract. The world's largest continental shelf, the East Siberian Shelf Sea, receives substantial input of terrestrial organic carbon (terr-OC) from both large rivers and erosion of its coastline. Degradation of organic matter from thawing permafrost in the Arctic is likely to increase, potentially creating a positive feedback mechanism to climate warming. This study focuses on the Buor-Khaya Bay (SE Laptev Sea), an area with strong terr-OC input from both coastal erosion and the Lena river. To better understand the fate of this terr-OC, molecular (acyl lipid biomarkers) and isotopic tools (stable carbon and radiocarbon isotopes) have been applied to both particulate organic carbon (POC) in surface water and sedimentary organic carbon (SOC) collected from the underlying surface sediments. Clear gradients in both extent of degradation and differences in source contributions were observed both between surface water POC and surface sediment SOC as well as over the 100 s km investigation scale (about 20 stations). Depleted δ13C-OC and high HMW/LMW n-alkane ratios signaled that terr-OC was dominating over marine/planktonic sources. Despite a shallow water column (10–40 m), the isotopic shift between SOC and POC varied systematically from +2 to +5 per mil for δ13C and from +300 to +450 for Δ14C from the Lena prodelta to the Buor-Khaya Cape. At the same time, the ratio of HMW n-alkanoic acids to HMW n-alkanes as well as HMW n-alkane CPI, both indicative of degradation, were 5–6 times greater in SOC than in POC. This suggests that terr-OC was substantially older yet less degraded in the surface sediment than in the surface waters. This unusual vertical degradation trend was only recently found also for the central East Siberian Sea. Numerical modeling (Monte Carlo simulations) with δ13C and Δ14C in both POC and SOC was applied to deduce the relative contribution of – plankton OC, surface soil layer OC and yedoma/mineral soil OC. This three end-member dual-carbon-isotopic mixing model suggests quite different scenarios for the POC vs SOC. Surface soil is dominating (63 ± 10 %) the suspended organic matter in the surface water of SE Laptev Sea. In contrast, the yedoma/mineral soil OC is accounting for 60 ± 9 % of the SOC. We hypothesize that yedoma-OC, associated with mineral-rich matter from coastal erosion is ballasted and thus quickly settles to the bottom. The mineral association may also explain the greater resistance to degradation of this terr-OC component. In contrast, more amorphous humic-like and low-density terr-OC from surface soil and recent vegetation represents a younger but more bioavailable and thus degraded terr-OC component held buoyant in surface water. Hence, these two terr-OC components may represent different propensities to contribute to a positive feedback to climate warming by converting OC from coastal and inland permafrost into CO2.


1994 ◽  
Vol 30 (10) ◽  
pp. 179-187 ◽  
Author(s):  
I. T. Miettinen ◽  
P. J. Martikainen ◽  
T. Vartiainen

Transformations in the amount and quality of organic matter (humus) during bank filtration of surface water were studied by analyzing the changes in total organic carbon (TOC), non-purgeable organic carbon (NPOC), chemical oxygen demand (COD), color of water, and UV absorbing humus fractions. The amount of organic matter expressed as TOC, NPOC, and COD depended on temperature and filtration distance from lake water. The color of water and the UV absorbing humus peaks presenting different humus molecule fractions decreased more effectively than other parameters measuring the amount of organic matter in water. The ratio of COD to TOC decreased when the filtration distance of water increased. Our observations indicated that bank filtration of humus-rich lake water changed more the quality of organic matter than its total amount.


Soil Research ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 34 ◽  
Author(s):  
Alla Marchuk ◽  
Pichu Rengasamy ◽  
Ann McNeill

The high proportion of adsorbed monovalent cations in soils in relation to divalent cations affects soil structural stability in salt-affected soils. Cationic effects on soil structure depend on the ionic strength of the soil solution. The relationships between CROSS (cation ratio of soil structural stability) and the threshold electrolyte concentration (TEC) required for the prevention of soil structural problems vary widely for individual soils even within a soil class, usually attributed to variations in clay mineralogy, organic matter, and pH. The objective of the present study was to test the hypothesis that clay dispersion influenced by CROSS values depends on the unique association of soil components, including clay and organic matter, in each soil affecting the net charge available for clay–water interactions. Experiments using four soils differing in clay mineralogy and organic carbon showed that clay dispersion at comparable CROSS values depended on the net charge (measured as negative zeta potential) of dispersed clays rather than the charge attributed to the clay mineralogy and/or organic matter. The effect of pH on clay dispersion was also dependent on its influence on the net charge. Treating the soils with NaOH dissolved the organic carbon and increased the pH, thereby increasing the negative zeta potential and, hence, clay dispersion. Treatment with calgon (sodium hexametaphosphate) did not dissolve organic carbon significantly or increase the pH. However, the attachment of hexametaphosphate with six charges on each molecule greatly increased the negative zeta potential and clay dispersion. A high correlation (R2 = 0.72) was obtained between the relative clay content and relative zeta potential of all soils with different treatments, confirming the hypothesis that clay dispersion due to adsorbed cations depends on the net charge available for clay–water interactions. The distinctive way in which clay minerals and organic matter are associated and the changes in soil chemistry affecting the net charge cause the CROSS–TEC relationship to be unique for each soil.


2021 ◽  
Author(s):  
Liza McDonough ◽  
Megan Behnke ◽  
Robert Spencer ◽  
Christopher Marjo ◽  
Martin Andersen ◽  
...  

<p>Dissolved organic matter (DOM) comprises a large and complex range of molecules with varying mass, elemental arrangements, conformation, and polarity. These diverse molecules interact with the environment resulting in changes to their molecular character and reactivity over time. Significant advances in our understanding of the molecular character of reactive and recalcitrant DOM have been made throughout the past decade, largely due to the development of ultra-high resolution techniques such as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). This understanding, however, is almost entirely based on surface water environments. Here, we investigate how the molecular properties of DOM change due to reactions occurring in a groundwater environment over time. We use FT-ICR MS combined with liquid chromatography organic carbon detection (LC-OCD), fluorescence and radiocarbon (<sup>14</sup>C) dissolved organic carbon (DOC) for a range of groundwater DOM samples, including the oldest DOC reported from a site which is not impacted by sedimentary organic carbon inputs (25,310 ± 600 years BP). Our results indicate that polarity and nominal oxidation state of carbon (NOSC) play a major role in the reactivity of groundwater DOM, with a preferential removal of hydrophilic, high oxygen to carbon (O/C) ratio molecules over time (r<sub>s</sub> = 0.91, p = 2.4 x 10<sup>-6</sup>). We also note an increase in likely bio-produced molecules containing low numbers of O atoms in deep methanogenic groundwater environments. These molecular formulae appear to accumulate due to the prolonged anoxic conditions which would not be experienced by surface water DOM. The decline in NOSC with increasing average bulk groundwater DOC age contrasts with findings from marine environments where NOSC has been reported to increase over time. Furthermore, the proportion of specific molecular formulae which are stable in marine waters, decline in groundwater as <sup>14</sup>C<sub>DOC</sub> decreases (r<sub>s</sub> = 0.68, p = 6.9 x 10<sup>-3</sup>) suggesting that current indicators of DOM degradation state derived from marine environments are not applicable to groundwater environments. Our research shows that the molecular character of reactive DOM in groundwater differs from that of surface water due to exposure to different environments and processing mechanisms, suggesting that it is the interaction between external environmental factors and intrinsic DOM molecular properties which control DOM recalcitrance.</p>


2008 ◽  
Vol 8 (6) ◽  
pp. 701-707 ◽  
Author(s):  
S. A. Baghoth ◽  
S. K. Maeng ◽  
S. G. Salinas Rodríguez ◽  
M. Ronteltap ◽  
S. Sharma ◽  
...  

Natural organic matter (NOM) occurs throughout the hydrologic cycle, varying in both amount and character. In this paper, a description of NOM in surface and drinking water, in groundwater and in seawater is presented. Water samples representing these environments were collected and characterized using multiple NOM characterization techniques, including fluorescence excitation emission matrices (F-EEM) and size exclusion liquid chromatography with organic carbon detection (LC-OCD). The results show that the raw surface water as well as the treated water comprises mainly (>70%) of humic substances. The biopolymers, which are more readily biodegradable, contribute up to 2% of the NOM in the raw water but this is completely removed after treatment. For sea water samples, humic substances represent about 50% of the dissolved organic carbon concentration (DOC), while the fraction with size bigger than 20 kDa (biopolymers) represents about 7%. During soil passage, there was preferential removal of non-humic substances (i.e., biopolymers) from wastewater effluent-impacted surface water while the specific ultraviolet absorbance (SUVA), which reflects the aromatic characteristics of organics in a sample, showed an increasing trend along the depth of the soil column. This is a consequence of the removal of non-humic substances (biopolymers) which results in an increase in aromaticity.


2020 ◽  
Author(s):  
Mary Zeller ◽  
Bryce Van Dam ◽  
Chris Lopes ◽  
Ashley Smyth ◽  
Christopher Osburn ◽  
...  

<p>Florida Bay is subtropical embayment characterized by dense Thalassia testudinum seagrass meadows, the prevalence of carbonate-rich sediments, and relatively long residence times (~1 yr). Florida Bay seagrass meadows store appreciable quantities of allochthonous and autochthonous organic matter (OM) as so-called ‘blue carbon’, the fate of which is therefore tied to that of the carbonate minerals it is bound to.  Dissolved organic carbon (DOC) concentrations are also relatively high (~7-12 mg/L), despite potential photo-oxidative loss in this shallow and long residence time system, as well as low internal DOC production due to the ecosystem’s documented oligotrophy.  These carbonate sediments can dissolve through net acid production via sediment heterotrophic processes as well as sulfide oxidation, processes which may be enhanced via O<sub>2</sub> pumping through seagrass roots.  </p><p>This study investigated the impact of carbonate dissolution on the release of sediment-associated OM to surface waters, and the relative contribution of this process to surface water DOC quantity and quality.  We undertook a three-part experimental approach, with analyses including EEMs, δ13C-DOC, and FT-ICR-MS, to better understand the sources and fate of DOC in Florida Bay. 1) We conducted a spatial survey of surface waters, pore waters, and acid-leachable (representing the ‘carbonate-bound’ OM fraction) sedimentary OM.  2)  We conducted a DOM photodegradation study using two potential source surface waters, from a main tributary (Taylor Slough) and a central mangrove island.  3) We conducted benthic flux experiments using intact sediment cores facilitating direct measurements of the quality and quantity of DOC release from sediments. The flux information was placed into the context of sediment dissolution rates, estimated from coinciding determinations of alkalinity and inorganic carbon.</p><p>While analyses are ongoing, our initial results indicate a high degree of similarity between the fluorescence signature (PARAFAC components and fluorescence indices) of acid-leachable sedimentary OM, and that of DOC in pore water and surface water throughout Florida Bay.  Taken together, our study points to sediment dissolution as an important, yet understudied, process affecting organic carbon cycling in carbonate-dominated systems like Florida Bay.</p>


2011 ◽  
Vol 6 (2) ◽  
Author(s):  
Laurence Durand-Bourlier ◽  
Amandine Tinghir ◽  
Philippe Masereel ◽  
Sylvie Baig

Belgium is increasingly encountering drinking water problems because of resource scarcity and because of the quality of surface water from rivers and canal, which are often highly degraded. High organic matter concentrations are found and treated water has non-satisfying organic contents. This has a direct impact on THM formation and bacteria regrowth in the supply network. With more and more stringent regulations, organic matters concentration level in drinking water must be reduced. Nanofiltration (NF) is a suitable method for organic matter removal with reduction efficiency sometimes higher than 90 % (Orecki et al. 2004). It can be more effective than conventional technologies like activated carbon adsorption (Coté et al. 1996). This is a reason for upgrading old treatment plants by using NF treatment as a polishing step. Two drinking water treatment plants located in Eupen and La Gileppe in Belgium needed to be upgraded. These both plants treat surface water from dams and are equipped with a conventional clarification. A pilot study was carried out to compare different treatment files to remove Total Organic Carbon (TOC) and Biologically Degradable Organic Carbon (BDOC). NF process has been finally chosen. The aim of the paper is to report and discuss data supporting the choice of NF from pilot scale study and next full-scale performances of both upgraded drinking water treatment plants. The whole demonstrates the interest of NF as a suitable technology organic matter removal.


2019 ◽  
Vol 68 (7) ◽  
pp. 523-534 ◽  
Author(s):  
Shivam Snehi ◽  
Hariraj Singh ◽  
Tanwi Priya ◽  
Brijesh Kumar Mishra

Abstract In the present study, the concept of ‘Sample alteration of surface water’ has been employed to improve the efficiency of the aluminum-based electrocoagulation (EC) treatment method for the removal of reactive fractions of natural organic matter (NOM) from chlorinated water. The characteristics of surface water have been slightly modified by adding mine water in different ratios. The process has been optimized using the response surface methodology (RSM) considering pH, current density, mix ratio, and contact time as factors. At the optimized condition, the EC method has significantly reduced total organic carbon, dissolved organic carbon (DOC), and UV254 absorbance values up to 24%, 27%, and 80%, respectively. The cumulative impact of sample alteration and EC method has exhibited outstanding coagulant activity in terms of UV254 abs, DOC, turbidity, phenol, and absorbance slope index (ASI) as well. A decrease in ASI values indicated the reduction of trihalomethane's formation in water-containing chlorine. This was validated by reduced chlorine demand. It can be concluded that mixing mine water with surface water can be a feasible and efficient method for treating water with a high NOM content.


Sign in / Sign up

Export Citation Format

Share Document