Is carbonate sediment dissolution a significant source of dissolved organic matter to Florida Bay?

Author(s):  
Mary Zeller ◽  
Bryce Van Dam ◽  
Chris Lopes ◽  
Ashley Smyth ◽  
Christopher Osburn ◽  
...  

<p>Florida Bay is subtropical embayment characterized by dense Thalassia testudinum seagrass meadows, the prevalence of carbonate-rich sediments, and relatively long residence times (~1 yr). Florida Bay seagrass meadows store appreciable quantities of allochthonous and autochthonous organic matter (OM) as so-called ‘blue carbon’, the fate of which is therefore tied to that of the carbonate minerals it is bound to.  Dissolved organic carbon (DOC) concentrations are also relatively high (~7-12 mg/L), despite potential photo-oxidative loss in this shallow and long residence time system, as well as low internal DOC production due to the ecosystem’s documented oligotrophy.  These carbonate sediments can dissolve through net acid production via sediment heterotrophic processes as well as sulfide oxidation, processes which may be enhanced via O<sub>2</sub> pumping through seagrass roots.  </p><p>This study investigated the impact of carbonate dissolution on the release of sediment-associated OM to surface waters, and the relative contribution of this process to surface water DOC quantity and quality.  We undertook a three-part experimental approach, with analyses including EEMs, δ13C-DOC, and FT-ICR-MS, to better understand the sources and fate of DOC in Florida Bay. 1) We conducted a spatial survey of surface waters, pore waters, and acid-leachable (representing the ‘carbonate-bound’ OM fraction) sedimentary OM.  2)  We conducted a DOM photodegradation study using two potential source surface waters, from a main tributary (Taylor Slough) and a central mangrove island.  3) We conducted benthic flux experiments using intact sediment cores facilitating direct measurements of the quality and quantity of DOC release from sediments. The flux information was placed into the context of sediment dissolution rates, estimated from coinciding determinations of alkalinity and inorganic carbon.</p><p>While analyses are ongoing, our initial results indicate a high degree of similarity between the fluorescence signature (PARAFAC components and fluorescence indices) of acid-leachable sedimentary OM, and that of DOC in pore water and surface water throughout Florida Bay.  Taken together, our study points to sediment dissolution as an important, yet understudied, process affecting organic carbon cycling in carbonate-dominated systems like Florida Bay.</p>

2012 ◽  
Vol 63 (11) ◽  
pp. 967 ◽  
Author(s):  
James W. Fourqurean ◽  
Gary A. Kendrick ◽  
Laurel S. Collins ◽  
Randolph M. Chambers ◽  
Mathew A. Vanderklift

Seagrass meadows in Florida Bay and Shark Bay contain substantial stores of both organic carbon and nutrients. Soils from both systems are predominantly calcium carbonate, with an average of 82.1% CaCO3 in Florida Bay compared with 71.3% in Shark Bay. Soils from Shark Bay had, on average, 21% higher organic carbon content and 35% higher phosphorus content than Florida Bay. Further, soils from Shark Bay had lower mean dry bulk density (0.78 ± 0.01 g mL–1) than those from Florida Bay (0.84 ± 0.02 mg mL–1). The most hypersaline regions of both bays had higher organic carbon content in surficial soils. Profiles of organic carbon and phosphorus from Florida Bay indicate that this system has experienced an increase in P delivery and primary productivity over the last century; in contrast, decreasing organic carbon and phosphorus with depth in the soil profiles in Shark Bay point to a decrease in phosphorus delivery and primary productivity over the last 1000 y. The total ecosystem stocks of stored organic C in Florida Bay averages 163.5 MgCorg ha–1, lower than the average of 243.0 MgCorg ha–1 for Shark Bay; but these values place Shark and Florida Bays among the global hotspots for organic C storage in coastal ecosystems.


2014 ◽  
Vol 11 (10) ◽  
pp. 14097-14132 ◽  
Author(s):  
L. Tremblay ◽  
J. Caparros ◽  
K. Leblanc ◽  
I. Obernosterer

Abstract. Natural iron fertilization of high-nutrient low-chlorophyll (HNLC) waters induces annually occurring spring phytoplankton blooms off Kerguelen Islands (Southern Ocean). To examine the origin and fate of particulate and dissolved organic matter (POM and DOM), D- and L-amino acids (AA) were quantified at bloom and HNLC stations. Total hydrolysable AA accounted for 21–25% of surface particulate organic carbon (%POCAA) at the bloom sites, but for 10% at the HNLC site. A marked decrease in %POCAA with depth was observed at the most productive stations leading to values between 3 and 5% below 300 m depth. AA contributed to only 0.9–4.4% of dissolved organic carbon (%DOCAA) at all stations. The only consistent vertical trend was observed at the most productive station (A3-2) where %DOCAA decreased from ∼2% in the surface waters to 0.9% near 300 m. These AA yields and other markers revealed that POM and DOM were more rapidly altered or mineralized at the bloom sites compared to the HNLC site. Different molecular markers indicated that POM mostly originated from diatoms and bacteria. The estimated average proportion of POM from intact phytoplankton cells in surface waters was 45% at the bloom station A3-2, but 14% at the HNLC site. Estimates based on D-AA yields indicated that ∼15% of POM and ∼30% of DOM was of bacterial origin (cells and cell fragments) at all stations. Surprisingly, the DOM in HNLC waters appeared less altered than the DOM from the bloom, had slightly higher dissolved AA concentrations, and showed no sign of alteration within the water column. Unfavorable conditions for bacterial degradation in HNLC regions can explain these findings. In contrast, large inputs of labile organic molecules and iron, likely stimulate the degradation of organic matter (priming effect) and the production of more recalcitrant DOM (microbial carbon pump) during iron-fertilized blooms.


Soil Research ◽  
2005 ◽  
Vol 43 (1) ◽  
pp. 1 ◽  
Author(s):  
S. G. Johnston ◽  
P. G. Slavich ◽  
P. Hirst

Surface soils from an acid sulfate soil (ASS) backswamp were inundated in a temperature controlled environment and surface-water chemistry changes monitored. The soils had contrasting in situ vegetative cover [i.e. 2 grass species, Cynodon dactylon and Pennisetum clandestinum (Poaceae), and litter from Melaleuca quinquenervia (Myrtaceae)]. The different vegetation types had similar biomass and carbon content; however, there were large differences in the quality and lability of that carbon, which strongly influenced decay/redox processes and the chemical composition of surface waters. The grass species had more labile carbon. Their surface waters displayed rapid sustained O2 depletion and sustained low Eh (~0 mV), high dissolved organic carbon (DOC), and moderate pH (5–6). Their soil acidity was partially neutralised, sulfides were re-formed, and reductive dissolution of Fe(III) led to the generation of stored acidity in the water column as Fe2+(aq). In contrast, M. quinquenervia litter was high in decay-resistant compounds. Its surface waters had lower DOC and low pH (<4) and only underwent a short period of low O2/Eh. Soluble Al caused M. quinquenervia surface waters to have higher titratable acidity and soil pH remained consistently low (~3.8–4.0). Concentrations of Cl– and Al in surface waters were strongly correlated to initial soil contents, whereas the behaviour of Fe and SO42– varied according to pH and redox status. This study demonstrates that changes in vegetation communities in ASS backswamps that substantially alter either (a) the pool of labile vegetative organic carbon or (b) the concentration of acidic solutes in surface soil can have profound implications for the chemical characteristics of backswamp surface waters.


2014 ◽  
Vol 38 (1) ◽  
pp. 278-287 ◽  
Author(s):  
Gabriel Pinto Guimarães ◽  
Eduardo de Sá Mendonça ◽  
Renato Ribeiro Passos ◽  
Felipe Vaz Andrade

Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.


2001 ◽  
Vol 1 (4) ◽  
pp. 25-33
Author(s):  
A. I. Schäfer ◽  
A.G. Fane ◽  
T.D. Waite

Nanofiltration (NF) can remove natural organic matter (NOM) and multivalent ions from surface waters. Large hydrophobic organics and calcium ions are responsible for irreversible fouling of nanofiltration membranes and thus a decrease of process efficiency and increase in cleaning requirements. Fouling due to the precipitation of organic-calcium complexes and the impact of colloids and coagulant (FeCl3) on the precipitation of these species was investigated. Coagulation in solution (as opposed to in the boundary layer) did not cause significant flux decline and was able to prevent irreversible fouling under conditions which were previously determined as detrimental. The rejection was varied if a strongly charged solid was deposited on the membrane.


1979 ◽  
Vol 36 (6) ◽  
pp. 678-682 ◽  
Author(s):  
F. C. Tan ◽  
P. M. Strain

Sixteen offshore surface samples within the Gulf of St. Lawrence show low δ13C values and are similar to eight offshore surface samples collected seaward of the Gulf of St. Lawrence. The δ13C surface values are consistent with δ13C values in plankton produced at the temperature found in the euphotic zone in the study area. Higher values are observed in four surface samples from the mouth of the St. Lawrence Estuary and probably result from high carbon demand during periods of high biological productivity. Lower values found in seven deep POC samples indicate changes in the nature of the POC caused by biological degradation of the organic matter. Significant differences (2–6‰) between the uniformly high δ13C values of the organic carbon in surface sediments and the low values of near-bottom water POC have been observed. The similarity between the δ13C values of surface water POC and the surface sediments suggest that surface water POC is an important source of organic carbon in surface sediments. Several observations of large vertical δ13C gradients in deep water POC suggest the presence of resuspended sediments 30–60 m above the sediment–water interface. Key words: particulate organic matter, carbon isotope ratios, isotope fractionation, sediment resuspension, sediment sources, Gulf of St. Lawrence


2020 ◽  
Author(s):  
Ting Wang

&lt;p&gt;Natural organic matter (NOM) played an important role in the riverine and global carbon cycle. In order to evaluate the impact of river discharge and anthropogenic activities on the spatio-temporal variability of NOM content and sources in Lancang River, China, a comprehensive study was conducted in two years from the head to the leave-boundary section. As results, the DOC value ranged among 0.91-2.80 mg/L, with sharp decrease in the middle reaches and downstream. While the SOC value significantly enhanced along the water flow, varied from 0.06% to 3.54%. The isotopic composition of organic carbon (&amp;#948;13C) suggested that predominant contribution of NOM is C3 plants in the upper reach, algae and soil organic matter in the middle reach, and aquatic plants in the downstream. EEM-PARAFAC results proved that NOM in Lancang River is mainly terrestrial organic carbon, while in situ microbial transformed NOM is very low. Moreover, the sharp increase of dissolved CO2 concentration in the lower reaches confirmed the strong respiration of microorganisms due to the higher DO and water temperature, thus resulted in the significantly different fluctuations of DOC and SOC.&lt;/p&gt;


2020 ◽  
Author(s):  
Angelica Bianco ◽  
Fabrizio Sordello ◽  
Mikael Ehn ◽  
Davide Vione ◽  
Monica Passananti

&lt;p&gt;The large production of plastic material (PlasticsEurope, 2019), together with the mishandling of plastic waste, has resulted in ubiquitous plastic pollution, which now reaches even the most remote areas of the Earth (Allen et al., 2019; Bergmann et al., 2019). Plastics undergo a slow process of erosion in the environment that decreases their size: microplastics (MPs) and nanoplastics (NPs) have diameters between 1 &amp;#181;m and 5 mm and lower than 1 &amp;#181;m, respectively (Frias and Nash, 2019).&lt;/p&gt;&lt;p&gt;The occurrence, transformation and fate of MPs and NPs in the environment are still unclear. Therefore, the objective of this work is to better understand the reactivity of NPs using an aqueous suspension of polystyrene NPs (PS-NPs) as a proxy, in the presence of sunlight and chemicals oxidants. The results obtained are relevant to both the atmospheric aqueous phase, such as cloud and fog droplets, and surface waters. We investigated the reactivity of PS-NPs with light and with two important oxidants in the environment: ozone (O&lt;sub&gt;3&lt;/sub&gt;) and hydroxyl radicals (&lt;sup&gt;&amp;#8226;&lt;/sup&gt;OH). The adsorption of ozone (O&lt;sub&gt;3&lt;/sub&gt;) on PS-NPs is investigated, showing a significant O&lt;sub&gt;3&lt;/sub&gt; uptake. Moreover, for the first time, a reactivity constant with &lt;sup&gt;&amp;#8226;&lt;/sup&gt;OH is determined. We found a linear correlation between the kinetic constants measured for three different sizes of PS-NPs and the surface exposed by the particles. Degradation products (short chain carboxylic acids and aromatic compounds), obtained by direct and &lt;sup&gt;&amp;#8226;&lt;/sup&gt;OH-mediated photolysis of PS-NPs suspensions, are identified by high-resolution mass spectrometry. Irradiation of a PS-NPs suspension under natural sunlight for 1 year has shown the formation of formic acid and organic compounds similar to those found in riverine and cloud dissolved organic matter.&lt;/p&gt;&lt;p&gt;This work is crucial to assess the impact of NPs abiotic degradation in atmospheric and surface waters; indeed, the reactivity constant and the degradation products can be implemented in environmental models to estimate the contribution of NPs degradation to the natural dissolved organic matter in the aqueous phase. A preliminary simulation using APEX (Aqueous Photochemistry of Environmentally occurring Xenobiotics) (Bodrato and Vione, 2014) model shows that in NPs-polluted environments (10&lt;sup&gt;9&lt;/sup&gt; particles mL&lt;sup&gt;-1&lt;/sup&gt;) there is potential for NPs to significantly scavenge &lt;sup&gt;&amp;#8226;&lt;/sup&gt;OH, if the content of natural organic matter is not too high, as observed for surface and cloud water.&lt;/p&gt;&lt;p&gt;Allen, S., et al., 2019.&amp;#160; Nat. Geosci. 12, 339&amp;#8211;344. https://doi.org/10.1038/s41561-019-0335-5&lt;br&gt;Bergmann, et al., 2019.&amp;#160; Sci. Adv. 5, eaax1157. https://doi.org/10.1126/sciadv.aax1157&lt;br&gt;Bodrato, M., Vione, D., 2014. Environ. Sci.: Processes Impacts 16, 732&amp;#8211;740. https://doi.org/10.1039/C3EM00541K&lt;br&gt;Frias, J., Nash, R., 2019. Mar. Pollut. Bull. 138, 145&amp;#8211;147. https://doi.org/10.1016/j.marpolbul.2018.11.022&lt;/p&gt;


2011 ◽  
Vol 8 (7) ◽  
pp. 1865-1879 ◽  
Author(s):  
E. S. Karlsson ◽  
A. Charkin ◽  
O. Dudarev ◽  
I. Semiletov ◽  
J. E. Vonk ◽  
...  

Abstract. The world's largest continental shelf, the East Siberian Shelf Sea, receives substantial input of terrestrial organic carbon (terr-OC) from both large rivers and erosion of its coastline. Degradation of organic matter from thawing permafrost in the Arctic is likely to increase, potentially creating a positive feedback mechanism to climate warming. This study focuses on the Buor-Khaya Bay (SE Laptev Sea), an area with strong terr-OC input from both coastal erosion and the Lena river. To better understand the fate of this terr-OC, molecular (acyl lipid biomarkers) and isotopic tools (stable carbon and radiocarbon isotopes) have been applied to both particulate organic carbon (POC) in surface water and sedimentary organic carbon (SOC) collected from the underlying surface sediments. Clear gradients in both extent of degradation and differences in source contributions were observed both between surface water POC and surface sediment SOC as well as over the 100 s km investigation scale (about 20 stations). Depleted δ13C-OC and high HMW/LMW n-alkane ratios signaled that terr-OC was dominating over marine/planktonic sources. Despite a shallow water column (10–40 m), the isotopic shift between SOC and POC varied systematically from +2 to +5 per mil for δ13C and from +300 to +450 for Δ14C from the Lena prodelta to the Buor-Khaya Cape. At the same time, the ratio of HMW n-alkanoic acids to HMW n-alkanes as well as HMW n-alkane CPI, both indicative of degradation, were 5–6 times greater in SOC than in POC. This suggests that terr-OC was substantially older yet less degraded in the surface sediment than in the surface waters. This unusual vertical degradation trend was only recently found also for the central East Siberian Sea. Numerical modeling (Monte Carlo simulations) with δ13C and Δ14C in both POC and SOC was applied to deduce the relative contribution of – plankton OC, surface soil layer OC and yedoma/mineral soil OC. This three end-member dual-carbon-isotopic mixing model suggests quite different scenarios for the POC vs SOC. Surface soil is dominating (63 ± 10 %) the suspended organic matter in the surface water of SE Laptev Sea. In contrast, the yedoma/mineral soil OC is accounting for 60 ± 9 % of the SOC. We hypothesize that yedoma-OC, associated with mineral-rich matter from coastal erosion is ballasted and thus quickly settles to the bottom. The mineral association may also explain the greater resistance to degradation of this terr-OC component. In contrast, more amorphous humic-like and low-density terr-OC from surface soil and recent vegetation represents a younger but more bioavailable and thus degraded terr-OC component held buoyant in surface water. Hence, these two terr-OC components may represent different propensities to contribute to a positive feedback to climate warming by converting OC from coastal and inland permafrost into CO2.


2011 ◽  
Vol 8 (11) ◽  
pp. 3341-3358 ◽  
Author(s):  
S. Audry ◽  
O. S. Pokrovsky ◽  
L. S. Shirokova ◽  
S. N. Kirpotin ◽  
B. Dupré

Abstract. This study reports the very first results on high-resolution sampling of sediments and their porewaters from three thermokarst (thaw) lakes representing different stages of ecosystem development located within the Nadym-Pur interfluve of the Western Siberia plain. Up to present time, the lake sediments of this and other permafrost-affected regions remain unexplored regarding their biogeochemical behavior. The aim of this study was to (i) document the early diagenesic processes in order to assess their impact on the organic carbon stored in the underlying permafrost, and (ii) characterize the post-depositional redistribution of trace elements and their impact on the water column. The estimated organic carbon (OC) stock in thermokarst lake sediments of 14 ± 2 kg m−2 is low compared to that reported for peat soils from the same region and denotes intense organic matter (OM) mineralization. Mineralization of OM in the thermokarst lake sediments proceeds under anoxic conditions in all the three lakes. In the course of the lake development, a shift in mineralization pathways from nitrate and sulfate to Fe- and Mn-oxyhydroxides as the main terminal electron acceptors in the early diagenetic reactions was suggested. This shift was likely promoted by the diagenetic consumption of nitrate and sulfate and their gradual depletion in the water column due to progressively decreasing frozen peat lixiviation occurring at the lake's borders. Trace elements were mobilized from host phases (OM and Fe- and Mn-oxyhydroxides) and partly sequestered in the sediment in the form of authigenic Fe-sulfides. Arsenic and Sb cycling was also closely linked to that of OM and Fe- and Mn-oxyhydroxides. Shallow diagenetic enrichment of particulate Sb was observed in the less mature stages. As a result of authigenic sulfide precipitation, the sediments of the early stage of ecosystem development were a sink for water column Cu, Zn, Cd, Pb and Sb. In contrast, at all stages of ecosystem development, the sediments were a source of dissolved Co, Ni and As to the water column. However, the concentrations of these trace elements remained low in the bottom waters, indicating that sorption processes on Fe-bounding particles and/or large-size organo-mineral colloids could mitigate the impact of post-depositional redistribution of toxic elements on the water column.


Sign in / Sign up

Export Citation Format

Share Document