A 3.1–10.6 GHz Ultra-Wideband Low Noise Amplifier With 13-dB Gain, 3.4-dB Noise Figure, and Consumes Only 12.9 mW of DC Power

2007 ◽  
Vol 17 (4) ◽  
pp. 295-297 ◽  
Author(s):  
Chao Fang ◽  
Choi L. Law ◽  
James Hwang
2018 ◽  
Vol 7 (3.6) ◽  
pp. 84
Author(s):  
N Malika Begum ◽  
W Yasmeen

This paper presents an Ultra-Wideband (UWB) 3-5 GHz Low Noise Amplifier (LNA) employing Chebyshev filter. The LNA has been designed using Cadence 0.18um CMOS technology. Proposed LNA achieves a minimum noise figure of 2.2dB, power gain of 9dB.The power consumption is 6.3mW from 1.8V power supply.  


Author(s):  
L. Pace ◽  
P. E. Longhi ◽  
W. Ciccognani ◽  
S. Colangeli ◽  
F. Vitulli ◽  
...  

Author(s):  
Dr. Rashmi S B ◽  
Mr. Raghavendra B ◽  
Mr. Sanketh V

A CMOS low noise amplifier (LNA) for ultra-wideband (UWB) wireless applications is presented in this paper. The proposed CMOS low noise amplifier (LNA) is designed using common-gate (CG) topology as the first stage to achieve ultra-wideband input matching. The common-gate (CG) is cascaded with common- source (CS) topology with current-reused configuration to enhance the gain and noise figure (NF) performance of the LNA with low power. The Buffer stage is used as output matching network to improve the reflection coefficient. The proposed low noise amplifier (LNA) is implemented using CADENCE Virtuoso Analog and Digital Design Environment tool in 90nm CMOS technology. The LNA provides a forward voltage gain or power gain (S21) of 32.34dB , a minimum noise figure of 2dB, a reverse-isolation (S12) of less than - 38.74dB and an output reflection coefficient (S22) of less than -7.4dB for the entire ultra-wideband frequency range. The proposed LNA has an input reflection coefficient (S11) of less than -10dB for the ultra-wideband frequency range. It achieves input referred 1-dB compression point of 78.53dBm and input referred 3-dB compression point of 13dBm. It consumes only 24.226mW of power from a Vdd supply of 0.7V.


Design methodology and analysis of a 60GHz-band Low Noise Amplifier (LNA) is presented in this paper. The LNA has been designed and simulated using source degenerated cascode topology in 90 nm CMOS for operation at 60 GHz. The structured LNA is minimized for its area with 50%. The designed LNA is computed with ADS and is verified its functionality in terms of Noise Figure (NF), Gain, Linearity, Power dissipation and Stability. The designed LNA uses 12 mW of dc power from a 1.5 V supply with 16.3 dB gain and a NF of 3.5 dB at 60 GHz. The designed LNA is unconditionally stable and has IIP3 of -9 dBm with FoM of 15.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 52
Author(s):  
Moustapha El Bakkali ◽  
Said Elkhaldi ◽  
Intissar Hamzi ◽  
Abdelhafid Marroun ◽  
Naima Amar Touhami

In this paper, a 3.1–11 GHz ultra-wideband low noise amplifier with low noise figure, high power gain S21, low reverse gain S12, and high linearity using the OMMIC ED02AH process, which employs a 0.18 μm Pseudomorphic High Electron Mobility Transistor is presented. This Low Noise Amplifier (LNA) was designed with the Advanced Design System simulator in distributed matrix architecture. For the low noise amplifier, four stages were used obtaining a good input/output matching. An average power gain S21 of 11.6 dB with a gain ripple of ±0.6 dB and excellent noise figure of 3.55 to 4.25 dB is obtained in required band with a power dissipation of 48 mW under a supply voltage of 2 V. The input compression point 1 dB and third-order input intercept point are −1.5 and 23 dBm respectively. The core layout size is 1.8 × 1.2 mm2.


2011 ◽  
Vol 130-134 ◽  
pp. 3251-3254
Author(s):  
Kang Li ◽  
Chi Liu ◽  
Xiao Feng Yang ◽  
Qian Feng ◽  
Chao Xian Zhu ◽  
...  

A 3.1 ~ 10.6 GHz Ultra-Wideband SiGe Low Noise Amplifier (LNA) is proposed. This low noise amplifier utilizes a current-reused technique to increase the gain and extend the bandwidth. We have a detailed analysis for the input matching, noise figure, gain and other features. The LNA was designed with the TSMC 0.35µm bipolar silicon-germanium (SiGe) processes. Simulation results show that the input reflection coefficient is less than-9dB, the output reflection coefficient is less than-10dB, the maximum power gain of 17 dB and the minimum noise factor (NF) of 2.35dB. The total power consumption is 6.2 mW with 2.5V power supply.


Author(s):  
Mohammed Nadhim Abbas ◽  
Farooq Abdulghafoor Khaleel

<span>We present the linearization of an ultra-wideband low noise amplifier (UWB-LNA) operating from 2GHz to 11GHz through combining two linearization methods. The used linearization techniques are the combination of post-distortion cancellation and derivative-superposition linearization methods. The linearized UWB-LNA shows an improved linearity (IIP3) of +12dBm, a minimum noise figure (NF<sub>min.</sub>) of 3.6dB, input and output insertion losses (S<sub>11</sub> and S<sub>22</sub>)  below -9dB over the entire working bandwidth, midband gain of 6dB at 5.8GHz, and overall circuit power consumption of 24mW supplied from a 1.5V voltage source. Both UWB-LNA and linearized UWB-LNA designs are verified and simulated with ADS2016.01 software using BSIM3v3 TSMC 180nm CMOS model files. In addition, the linearized UWB-LNA performance is compared with other recent state-of-the-art LNAs.</span>


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hemad Heidari Jobaneh

The calculation and design of an ultralow-power Low Noise Amplifier (LNA) are proposed in this paper. The LNA operates from 5 GHz to 10 GHz, and forward body biasing technique is used to bring down power consumption of the circuit. The design revolves around precise calculations related to input impedance, output impedance, and the gain of the circuit. MATLAB and Advanced Design System (ADS) are utilized to design and simulate the LNA. In addition, TSMC 0.13 μm CMOS process is used in ADS. The LNA is biased with two different voltage supplies in order to reduce power consumption. Noise Figure (NF), input matching (S11), gain (S21), IIP3, and power dissipation are 1.46 dB–2.27 dB, −11.25 dB, 13.82 dB, −8.5, and 963 μW, respectively.


Sign in / Sign up

Export Citation Format

Share Document