scholarly journals Design And Analysis Of CMOS Low Noise Amplifier Circuit For 5-GHz Cascode and Folded Cascode In 180nm Technology

Author(s):  
T. Kanthi ◽  
D. Sharath Babu Rao

This paper is about Low noise amplifier topologies based on 0.18µm CMOS technology. A common source stage with inductive degeneration, cascode stage and folded cascode stage is designed, simulated and the performance has been analyzed. The LNA’s are designed in 5GHz. The LNA of cascode stage of noise figure (NF) 2.044dB and power gain 4.347 is achieved. The simulations are done in cadence virtuoso spectre RF.

Author(s):  
T. Kanthi ◽  
D. Sharath Babu Rao

This paper is about Low noise amplifier topologies based on 0.18µm CMOS technology. A common source stage with inductive degeneration, cascode stage and folded cascode stage is designed, simulated and the performance has been analyzed. The LNA’s are designed in 5GHz. The LNA of cascode stage of noise figure (NF) 2.044dB and power gain 4.347 is achieved. The simulations are done in cadence virtuoso spectre RF.


2018 ◽  
Vol 7 (3.6) ◽  
pp. 84
Author(s):  
N Malika Begum ◽  
W Yasmeen

This paper presents an Ultra-Wideband (UWB) 3-5 GHz Low Noise Amplifier (LNA) employing Chebyshev filter. The LNA has been designed using Cadence 0.18um CMOS technology. Proposed LNA achieves a minimum noise figure of 2.2dB, power gain of 9dB.The power consumption is 6.3mW from 1.8V power supply.  


This discourse used 45nm CMOS technology to design a Low noise amplifier for a Noise figure < 2dB and gain greater than 13dB at the 60GHz unlicensed band of frequency. A single stage, primary cascode LNA is modeled and its small signal model is analyzed. Common source structure is hired in the driver stage to escalate the output power with single stage contours. To enhance small signal gain, simple active transistor feedback and cascode feedback configurations are designed and appended to the basic LNA. In addition to this, current re-use inductor is designed and added to the cascode amplifier which is deliberated to give low power and low noise figure. Small signal analysis of simple active transistor feedback and current re-use inductor has been presented. The measurement results indicated that the input match and the output gain at 60GHz achieves -8dB and 13dB respectively with the supply voltage of 900mV. The frequency response obtained is a narrow band response with 6GHz of bandwidth. The circuit is simulated by Cadence Virtuoso tool. The layout of the related circuit is drawn by means of the Virtuoso Layout editor with total size of 0.1699μm2.


Author(s):  
S.A.Z. Murad ◽  
A. F. Hasan ◽  
A. Azizan ◽  
A. Harun ◽  
J. Karim

<span>This paper presents a concurrent dual-band CMOS low noise amplifier (LNA) at operating frequency of 2.4 GHz and 5.2 GHz for WLAN applications. The proposed LNA employed cascode common source to obtain high gain using 0.13-µm CMOS technology. The concurrent dual-band frequencies are matched using LC network band-pass and band-stop notch filter at the input and output stages. The filters help to shape the frequency response of the proposed LNA. The simulation results indicate that the LNA achieves a forward gain of 21.8 dB and 14.22 dB, input return loss of -18 dB and -14 dB at 2.4 GHz and 5.2 GHz, respectively. The noise figure of 4.1 dB and 3.5 dB with the input third-order intercept points 7 dBm and 10 dBm are obtained at 2.4 GHz and 5.2 GHz, respectively. The LNA dissipates 2.4 mW power at 1.2 V supply voltage with a chip size of 1.69 mm2.</span>


Author(s):  
Dr. Rashmi S B ◽  
Mr. Raghavendra B ◽  
Mr. Sanketh V

A CMOS low noise amplifier (LNA) for ultra-wideband (UWB) wireless applications is presented in this paper. The proposed CMOS low noise amplifier (LNA) is designed using common-gate (CG) topology as the first stage to achieve ultra-wideband input matching. The common-gate (CG) is cascaded with common- source (CS) topology with current-reused configuration to enhance the gain and noise figure (NF) performance of the LNA with low power. The Buffer stage is used as output matching network to improve the reflection coefficient. The proposed low noise amplifier (LNA) is implemented using CADENCE Virtuoso Analog and Digital Design Environment tool in 90nm CMOS technology. The LNA provides a forward voltage gain or power gain (S21) of 32.34dB , a minimum noise figure of 2dB, a reverse-isolation (S12) of less than - 38.74dB and an output reflection coefficient (S22) of less than -7.4dB for the entire ultra-wideband frequency range. The proposed LNA has an input reflection coefficient (S11) of less than -10dB for the ultra-wideband frequency range. It achieves input referred 1-dB compression point of 78.53dBm and input referred 3-dB compression point of 13dBm. It consumes only 24.226mW of power from a Vdd supply of 0.7V.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 227
Author(s):  
J Manjula ◽  
A Ruhan Bevi

This paper presents an Adaptive Gain 79GHz Low Noise Amplifier (LNA) suitable for Radars applications. The circuit schematic is a two stage LNA consists of Differential cascode configuration followed by a simple common source amplifier with an Adaptive Biasing (ADB) circuit. Adaptive biasing is a three- stage common source amplifier to decrease output voltage as input power increases. The circuit is simulated in 180nm CMOS technology and the simulation results have proved that the circuit operates at the center frequency 79GHz with adaptive biasing for adaptive gain. The gain analysis shows a decrease of 35-30dB with an increase in input power -50 to 0 dB. At 79GHz the circuit has achieved the input reflection coefficient (S11) of -24.7dB, reverse isolation (S12) of -3 dB, forward transmission coefficient (S21) of -2.97dB and output reflection coefficient (S22) of -5.62 dB with the reduced noise figure of 0.9 dB and a power consumption of 236 mW.  


Author(s):  
Farshad Shirani Bidabadi ◽  
Sayed Vahid Mir-moghtadaei

In this paper, an Ultra-Wideband (UWB) low noise amplifier (LNA) with low power consumption and high-power gain in 180[Formula: see text]nm CMOS technology is presented. An innovative combination of conventional methods to design UWB-LNA, i.e., resistive-feedback, inductive-series peaking, noise cancelling and inductive degeneration techniques is described here. The proposed LNA consists of two common source amplifiers with resistive feedback in which the noise and power consumption have been reduced by using the noise cancelling and current reuse techniques, respectively. Also, resistive feedback in the first stage reduces input resistance, hereby improving input impedance matching. In the second stage, which is used to increase the power gain, a common source structure with inductive-series peaking and noise cancellation techniques is used. The analytical results agree well with the post layout simulation results. The post-layout simulation shows a gain of [Formula: see text][Formula: see text]dB and noise figure (NF) of 2.3[Formula: see text]dB in the whole [Formula: see text][Formula: see text]dB bandwidth of 0.1[Formula: see text]GHz to 6.1[Formula: see text]GHz, while the S11 and S22 are less than [Formula: see text][Formula: see text]dB. The proposed circuit has a figure of merit of 9.9 which is significantly improved compared to the previous works. The total power dissipation is only 7.3[Formula: see text]mW, and the active area is less than 0.7[Formula: see text]mm2.


Author(s):  
Maizan Muhamad ◽  
Norhayati Soin ◽  
Harikrishnan Ramiah

<p>This paper presents the linearity improvement of differential CMOS low noise amplifier integrated circuit using 0.13um CMOS technology. In this study, inductively degenerated common source topology is adopted for wireless LAN application. The linearity of the single-ended LNA was improved by using differential structures with optimum biasing technique. This technique achieved better LNA and linearity performance compare with single-ended structure. Simulation was made by using the cadence spectre RF tool. Consuming 5.8mA current at 1.2V supply voltage, the designed LNA exhibits S<sub>21</sub> gain of 18.56 dB, noise figure (NF) of 1.85 dB, S<sub>11</sub> of −27.63 dB, S<sub>22</sub> of -34.33 dB, S<sub>12</sub> of −37.09 dB and IIP3 of -7.79 dBm.</p>


2017 ◽  
Vol 7 (1.3) ◽  
pp. 69
Author(s):  
M. Ramana Reddy ◽  
N.S Murthy Sharma ◽  
P. Chandra Sekhar

The proposed work shows an innovative designing in TSMC 130nm CMOS technology. A 2.4 GHz common gate topology low noise amplifier (LNA) using an active inductor to attain the low power consumption and to get the small chip size in layout design. By using this Common gate topology achieves the noise figure of 4dB, Forward gain (S21) parameter of 14.7dB, and the small chip size of 0.26 mm, while 0.8mW power consuming from a 1.1V in 130nm CMOS gives the better noise figure and improved the overall performance.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 448
Author(s):  
S Manjula ◽  
M Malleshwari ◽  
M Suganthy

This paper presents a low power Low Noise Amplifier (LNA) using 0.18µm CMOS technology for ultra wide band (UWB) applications. gm boosting common gate (CG) LNA is designed to improve the noise performance.  For the reduction of on chip area, active inductor is employed at the input side of the designed LNA for input impedance matching. The proposed UWB LNA is designed using Advanced Design System (ADS) at UWB frequency of 3.1-10.6 GHz. Simulation results show that the gain of 10.74+ 0.01 dB, noise figure is 4.855 dB, input return loss <-13 dB and 12.5 mW power consumption.  


Sign in / Sign up

Export Citation Format

Share Document