scholarly journals Optimum Selection of Renewable Energy Powered Desalination Systems

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 612 ◽  
Author(s):  
Ahmad H. Al-Jabr ◽  
Rached Ben-Mansour

Research and development of desalination technologies are becoming highly important because of the rapid increase in freshwater demand. Researchers are continually working on improving the existing desalination technologies and exploring new methods and ideas to desalinate salty water in order to come up with cost-effective systems. Comparisons between different renewable powered desalination technologies were mainly based on different system capacity, energy source system, feed-water salinity and system components. This makes the economical comparison almost impossible. There is an existing gap in having an economical comparison to different renewable energy powered desalination systems with the same basics such as availability of renewable and water resources. This research is an attempt to provide a systematic methodology to obtain the most cost-effective renewable energy powered desalination system.

2020 ◽  
Vol 2 (4) ◽  
pp. 124-133
Author(s):  
Cristian Purece ◽  
Vasile Pleşca ◽  
Lilica Corlan

Currently the global demand for electricity and drinking water is constantly increasing. Given its many economic, social and environmental benefits, hydro energy will be an important contributor to the energy mix of the future. Isolated areas, heavily underdeveloped regions, disaster-affected areas have a common need of easy-to-use means to generate electricity. The most efficient way to meet these needs involves the use of various renewable energy resources available locally. One of the main sources of renewable energy is hydro energy, more specifically micro-hydro energy. However, hydropower projects involve various considerations at different levels of project implementation. To make the most of the available hydropower potential, new models of hydraulic turbines were developed. For a cost-effective and efficient hydropower project, the selection of the hydraulic turbine must be optimally studied. The objective of the present work is to carry out a review of the optimum selection mode of the hydraulic turbine that equips a micro hydropower plant (MHP).


1985 ◽  
Vol 24 (03) ◽  
pp. 163-165 ◽  
Author(s):  
K. John

SummaryAs many bibliographic services in medicine are offered, literature searches in eight databases at DIMDI were performed to find out which database is most important in medicine. The distribution of publications from members of the medical faculty of Frankfurt University was examined. No save prediction is possible as to which database will yield most articles. Overlapping from different databases is often rather low. The selection of an appropriate database mix for sufficient recall and in a cost-effective manner.is a task for an experienced searcher.


2016 ◽  
Vol 9 (1) ◽  
pp. 80-95
Author(s):  
Agus Sudibyo ◽  
Sardjono Sardjono

Crude palm oil (CPO)is the richest natural plant source of carotenoids in terms of retinol (pro-vitamin A) equivalent, whereas palm oil mill effluent (POME) is generated from palm oil industry that contains oil and carotenes that used to be treated before discharge. Carotenoids are importance in animals and humans for the purpose of the enhancement of immune response, conversion of vitamin A and scavenging of oxygen radicals. This component has different nutritional  functions and benefits to humaan health. The growing interest in the other natural sources of beta-carotene and growing awareness to prevent pollution has stimulated the industrial use of CPO and POME as a raw material for carotenoids extraction. Various technologies of extraction and separation have been developed in order to recover of carotenoids.This article reports on various technologies that have been developed in order to recover of carotenoids from being destroyed in commercial refining of palm oil and effects of some various treatments on the extraction end separation for carotenoid from palm oil and carotenoids concentration. Principally, there are different technologies, and there is one some future which is the use of solvent. Solvent plays important role  in the most technologiest, however the problem of solvents which are used is that they posses potentiaal fire health and environmental hazards. Hence selection of the  most safe, environmentally friendly and cost effective solvent is important to design of alternative extraction methods.Chemical molecular product design is one of the methods that are becoming more popular nowadays for finding solvent with the desired properties prior to experimental testing.ABSTRAKMinyak sawit kasar merupakan sumber karotenoid terkaya yang berasal dari tanaman sawit sebagai senyawa yang sama dengan retinol atau pro-vitamin A; sedangkan limbah pengolahan minyak sawit dihasilkan dari industri pengolahan minyak sawit yang berisi minyak dan karotene yang perlu diberi perlakuan terlebih dahulu sebelum dibuang. Karotenoid merupakan bahan penting yang diperlukan pada hewan dan manusia guna memperkuat tanggapan terhadap kekebalan, konversi ke vitamin A dan penangkapan gugus oksigen radikal. Dengan berkembangnya ketertarikan dalam mencari beta-karotene yang bersumber dari alam lain dan meningkatnya kesadaran untuk mencegah adanya pencemaran lingkungan, maka mendorong suatu industri untuk menggunakan CPO dan POME sebagai bahan baku untuk diekstrak karotenoidnya. Berbagai macam teknologi guna mengekstrak dan memisahkan karotenoid telah dikembangkan untuk mendapatkan kembali karotenoidnya. Makalah ini melaporkan dan membahas berbagai jenis teknologi yang telah dikembangkan guna mendapatkan kembali senyawa karotenoid dari kerusakan di dalam proses pemurnian minyak sawit secara komersial dan pengaruh beberapa perlakuan terhadap ekstrasi dan pemisahan karotenoid dari minyak sawit dan konsentrasi karotenoidnya. Pada prinsipnya, berbagai teknologi yang digunakan untuk mengekstrak dan memisahkan karotenoid terdapat perbedaan, dan terdapat salah satu teknologi yang digunakan untuk esktrasi dan pemisahan karotenoid adalah menggunakan bahan pelarut. Pelarut yang digunakan mempunyai peranan yang penting dalam teknologi ekstrasi; namun pelarut yang digunakan untuk mengekstrak tersebut mempunyai persoalan karena berpotensi mengganggu kesehatan dan membahayakan cemaran lingkungan. Oleh karena itu, pemilihan jenis teknologi yang aman, ramah terhadap lingkungan dan biaya yang efektif untuk penggunaan pelarut merupakan hal penting sebelum dilakukan desain metode/teknologi alternatif untuk esktrasi karotenoid. Pola produk molekuler kimia merupakan salah satu metode yang saat ini menjadi lebih populer untuk mencari pelarut dengan sifat-sifat yang dikehendaki sebelum diujicobakan. Kata kunci :    karotenoid, ekstrasi, pemisahan, teknologi, minyak sawit kasar, limbah industri pengolahan sawit.


In the era of Globalization, advancement of technology and stiff competition, particularly, in the I.T. Industry, companies have to adopt new H.R. strategies and practices so as to constantly evolve and grow. In this context, existing recruitment strategies have to be replaced by new strategies. Many companies are now extensively depending on the internet to connect to larger audiences globally. Organizations are in a position to attract profiles, resumes from potential candidates by announcing their vacancies on their own websites. E-recruitment is evoking interest among the companies typically over the last few years. The spread of information technology and growth of Internet has paved way for companies willing to hunt for talent on the job seeking websites. In the years to come, social networking will soon be an indispensable part of the hiring process. It is cost effective, does not require setting up an office and forms an effective tool for recruiters. The main purpose of this study was to understand the application of factor analysis in social science research and to reduce a large number of variables into manageable smaller factors for further analysis of the employers’ perception on social media recruitment with reference to the I.T. Sector in Bangalore.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 917
Author(s):  
Ickjin Son ◽  
Grace Firsta Lukman ◽  
Mazahir Hussain Shah ◽  
Kwang-Il Jeong ◽  
Jin-Woo Ahn

Switched reluctance motors (SRMs) are simple in structure, easy to manufacture, magnet-less, brushless, and highly robust compared to other AC motors which makes them a good option for applications that operate in harsh environment. However, the motor has non-linear magnetic characteristics, and it comes with various pole-phase combinations and circuit topologies that causes many difficulties in deciding on which type to choose. In this paper, the viability of SRM as a low-cost, rugged machine for vehicle radiator cooling fan is considered. First, necessary design considerations are presented, then three commonly use types of SRM are analyzed: A 3-phase 6/4, 3-phase 12/8, and a 4-phase 8/6 to find their static and dynamic characteristics so the most suitable type can be selected. Simulation results show that the 8/6 SRM produces the highest efficiency with less phase current which reduces the converter burden. However, with asymmetric half bridge converter, eight power switches are required for 8/6 SRM and thus put a burden on the overall drive cost. As a solution, the Miller converter with only six switches for four phase SRM. To verify the proposed idea, the 8/6 SRM was manufactured and tested. The results show that Miller converter can be used for the proposed SRM with slightly reduced efficiency at 80.4%.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 16
Author(s):  
Andrea Frazzica ◽  
Régis Decorme ◽  
Marco Calderoni ◽  
Alessandra Cuneo ◽  
Zuzana Taťáková ◽  
...  

This workshop brought together a selection of H2020 EU-funded projects involving experts from the biomass, geothermal, solar thermal, and heat pump sectors to discuss a common strategy for increasing the use of renewable energy technologies for heating and cooling for buildings and industry.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2338
Author(s):  
Sofia Agostinelli ◽  
Fabrizio Cumo ◽  
Giambattista Guidi ◽  
Claudio Tomazzoli

The research explores the potential of digital-twin-based methods and approaches aimed at achieving an intelligent optimization and automation system for energy management of a residential district through the use of three-dimensional data model integrated with Internet of Things, artificial intelligence and machine learning. The case study is focused on Rinascimento III in Rome, an area consisting of 16 eight-floor buildings with 216 apartment units powered by 70% of self-renewable energy. The combined use of integrated dynamic analysis algorithms has allowed the evaluation of different scenarios of energy efficiency intervention aimed at achieving a virtuous energy management of the complex, keeping the actual internal comfort and climate conditions. Meanwhile, the objective is also to plan and deploy a cost-effective IT (information technology) infrastructure able to provide reliable data using edge-computing paradigm. Therefore, the developed methodology led to the evaluation of the effectiveness and efficiency of integrative systems for renewable energy production from solar energy necessary to raise the threshold of self-produced energy, meeting the nZEB (near zero energy buildings) requirements.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 112 ◽  
Author(s):  
Alex Iglesias ◽  
Zoltan Dombovari ◽  
German Gonzalez ◽  
Jokin Munoa ◽  
Gabor Stepan

Cutting capacity can be seriously limited in heavy duty face milling processes due to self-excited structural vibrations. Special geometry tools and, specifically, variable pitch milling tools have been extensively used in aeronautic applications with the purpose of removing these detrimental chatter vibrations, where high frequency chatter related to slender tools or thin walls limits productivity. However, the application of this technique in heavy duty face milling operations has not been thoroughly explored. In this paper, a method for the definition of the optimum angles between inserts is presented, based on the optimum pitch angle and the stabilizability diagrams. These diagrams are obtained through the brute force (BF) iterative method, which basically consists of an iterative maximization of the stability by using the semidiscretization method. From the observed results, hints for the selection of the optimum pitch pattern and the optimum values of the angles between inserts are presented. A practical application is implemented and the cutting performance when using an optimized variable pitch tool is assessed. It is concluded that with an optimum selection of the pitch, the material removal rate can be improved up to three times. Finally, the existence of two more different stability lobe families related to the saddle-node and flip type stability losses is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document