scholarly journals Technologies for obtaining energy from micro-hydropower resources

2020 ◽  
Vol 2 (4) ◽  
pp. 124-133
Author(s):  
Cristian Purece ◽  
Vasile Pleşca ◽  
Lilica Corlan

Currently the global demand for electricity and drinking water is constantly increasing. Given its many economic, social and environmental benefits, hydro energy will be an important contributor to the energy mix of the future. Isolated areas, heavily underdeveloped regions, disaster-affected areas have a common need of easy-to-use means to generate electricity. The most efficient way to meet these needs involves the use of various renewable energy resources available locally. One of the main sources of renewable energy is hydro energy, more specifically micro-hydro energy. However, hydropower projects involve various considerations at different levels of project implementation. To make the most of the available hydropower potential, new models of hydraulic turbines were developed. For a cost-effective and efficient hydropower project, the selection of the hydraulic turbine must be optimally studied. The objective of the present work is to carry out a review of the optimum selection mode of the hydraulic turbine that equips a micro hydropower plant (MHP).

2011 ◽  
Vol 347-353 ◽  
pp. 3846-3855 ◽  
Author(s):  
Ali Baniyounes ◽  
Gang Liu ◽  
M. G. Rasul ◽  
M. M. K. Khan

In Australia the future demand for energy is predicted to increase rapidly. Conventional energy resources soaring prices and environmental impact have increased the interest in renewable energy technology. As a result of that the Australian government is promoting renewable energy; such as wind, geothermal, solar and hydropower. These types of energy are believed to be cost-effective and environmentally friendly. Renewable energy availability is controlled by climatic conditions such as solar radiation, wind speed and temperature. This paper aims to assess the potential of renewable energy resources, in particular wind and solar energy in an Australian subtropical region (Central and North Queensland) namely, Gladstone, Emerald, Rockhampton, Yeppoon, Townsville, and Cairns. Analysis is done by using the latest statistical state of Queensland energy information, along with measured data history of wind speed, solar irradiations, air temperature, relative humidity, and atmospheric pressure for those sites. This study has also shown that national assessments of solar and wind energy potential can be improved by improving local climatic data assessments using spatial databases of Central and North Queensland areas.


2016 ◽  
Vol 07 (04) ◽  
pp. 1650010 ◽  
Author(s):  
WICHSINEE WIBULPOLPRASERT

Renewable electricity subsidies have been popular policy instruments to combat climate change because of their ability to offset emissions. This paper studies the long-run welfare benefits of optimizing the design of the existing renewable energy subsidy (the status quo) in the presence of heterogeneity in the offset emissions. In particular, I measure the welfare gain from differentiating renewable subsidies across location and time to reflect the environmental benefits from emissions offset in the context of wind energy in the Texas electricity market. I find that the welfare gain from differentiation is small compared to the gain already achieved under the status quo subsidy. In contrast, the optimal emissions tax yields much larger welfare gain because it engages in other cost-effective emissions abatement channels that renewable energy subsidies do not: namely, demand conservation and cross-plant fuel substitution.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 612 ◽  
Author(s):  
Ahmad H. Al-Jabr ◽  
Rached Ben-Mansour

Research and development of desalination technologies are becoming highly important because of the rapid increase in freshwater demand. Researchers are continually working on improving the existing desalination technologies and exploring new methods and ideas to desalinate salty water in order to come up with cost-effective systems. Comparisons between different renewable powered desalination technologies were mainly based on different system capacity, energy source system, feed-water salinity and system components. This makes the economical comparison almost impossible. There is an existing gap in having an economical comparison to different renewable energy powered desalination systems with the same basics such as availability of renewable and water resources. This research is an attempt to provide a systematic methodology to obtain the most cost-effective renewable energy powered desalination system.


2019 ◽  
Vol 37 (4) ◽  
pp. 412-418 ◽  
Author(s):  
Çağdaş Gönen ◽  
Elif Kaplanoğlu

Owing to rising population and increasing energy demand, renewable energy resources become the most convenient and promising solution. Hence, solar power plant investments and photovoltaic module numbers have risen sharply. Turkey is one of the tight followers of the energy trends, thanks to its rising energy demand and economic power. However, the consequences of the massive plant wastes importance in term of economically and environmentally have not been understood yet. Almost 70% of the modules are formed by glass and the rest accumulates economically valuable metal materials, which are silver, aluminium and copper. These three main materials are substantially important in the overall waste. Not only the economic value, but also the environmental impacts of the mining effluents to excavate these metals are causing emission problems. As a chain reaction, the higher energy demand triggers a search for new and renewable energy resources. This is why popularity of solar energy has increased. Solar energy can be absorbed and transformed through photovoltaic modules, which contain glass and three main metals. In order to respond for the production of modules, metals are fundamental. This need triggers the need of metals mining excavations and emissions. In this respect, in the near future, thanks to the rising investments on photovoltaic modules and the CO2 emissions coming from mining, the wastes of photovoltaic modules and the need of recycling will become more important. That is why, in this study it is aimed to present environmental benefits and economic recoveries of recycling photovoltaic module in Turkey.


2019 ◽  
Vol 11 (8) ◽  
pp. 2444 ◽  
Author(s):  
Ming Hu

A comprehensive case study on life-cycle cost analysis (LCCA) was conducted on a two- story education building with a projected 40-year lifespan in College Park, Maryland. The aim of this paper was to (1) create a life cycle assessment model, using an education building to test the model, (2) compare the life cycle cost (LCC) of different renovation scenarios, taking into account added renewable energy resources to achieve the university’s overall carbon neutrality goal, and (3) verify the robustness of the LCC model by conducting sensitivity analysis and studying the influence of different variables. Nine renovation scenarios were constructed by combining six renovation techniques and three renewable energy resources. The LCCA results were then compared to understand the cost-effective relation between implementing energy reduction techniques and renewable energy sources. The results indicated that investing in energy-efficient retrofitting techniques was more cost-effective than investments in renewable energy sources in the long term. In the optimum scenario, renovation and renewable energy, when combined, produced close to a 90% reduction in the life cycle cost compared to the baseline. The payback period for the initial investment cost, including avoided electricity costs, varies from 1.4 to 4.1 years. This suggests that the initial investment in energy-efficient renovation is the primary factor in the LCC of an existing building.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
T. T. Lie ◽  
Xiuli Liang ◽  
M. H. Haque

AbstractMost of the electrical infrastructure in use around the world today is decades old, and may be illsuited to widespread proliferation of personal Electric Vehicles (EVs) whose charging requirements will place increasing strain on grid demand. In order to reduce the pressure on the grid and taking benefits of off peak charging, this paper presents a smart and cost effective EV charging methodology for residential homes equipped with renewable energy resources such as Photovoltaic (PV) panels and battery. The proposed method ensures slower battery degradation and prevents overcharging. The performance of the proposed algorithm is verified by conducting simulation studies utilizing running data of Nissan Altra. From the simulation study results, the algorithm is shown to be effective and feasible which minimizes not only the charging cost but also can shift the charging time from peak value to off-peak time.


2017 ◽  
Vol 9 (9) ◽  
pp. 1611 ◽  
Author(s):  
Mazhar Baloch ◽  
Safdar Abro ◽  
Ghulam Sarwar Kaloi ◽  
Nayyar Mirjat ◽  
Sohaib Tahir ◽  
...  

The non-renewable energy resources are limited and depleting gradually. As such, energy security has attained the greatest amount of attention globally than ever before. In the meantime, energy crises are already affecting the developing countries such as Pakistan, even though one-third of the population of the country is not even not connected to the national electricity grid. The population with access to on-grid electricity is enduring load shedding of more than 12 h a day. This situation is alarming and require immediate attention is required so as to add alternative energy resources to the country, which has long been relying on imported fuels. It is, therefore, high time that the abundant potential in the renewable energy resources of Pakistan such as solar, wind, and biomass are harnessed. These renewable energy resources are economical and environmentally friendly, and thus considered as sustainable, and the utilization of these in meeting energy demands can help to conserve conventional resources early diminishing. This paper provides a detailed description of the energy consumption and load-shedding scenario in Pakistan thereby focusing specifically Sindh and Baluchistan provinces. Since, wind energy is considered one of the cost-effective renewable resources, six potential sites in these two provinces are considered in this study. These sites lie within 250 km of the southeastern and 800 km of the southwestern regions of Pakistan. One-year wind speed data have been reported for variable heights of these proposed sites which represent to have an annual average wind speed of 6.63 m/s and 5.33 m/s respectively. The power generation data for these location of two provinces is 7.653 GWh, and 5.456 GWh per annum respectively. This study also elaborates on the advantages and disadvantages of harvesting and installing the wind energy and provides a technical proposal for the generation of electricity from the wind in the selected remote zones which are off the national grid. The findings of this paper will help concerned government departments to devise appropriate policies and attract investment in the wind energy sector to eradicate the on-going electricity crisis.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 627
Author(s):  
Mokhtar Said ◽  
Abdullah M. Shaheen ◽  
Ahmed R. Ginidi ◽  
Ragab A. El-Sehiemy ◽  
Karar Mahmoud ◽  
...  

Recently, the use of diverse renewable energy resources has been intensively expanding due to their technical and environmental benefits. One of the important issues in the modeling and simulation of renewable energy resources is the extraction of the unknown parameters in photovoltaic models. In this regard, the parameters of three models of photovoltaic (PV) cells are extracted in this paper with a new optimization method called turbulent flow of water-based optimization (TFWO). The applications of the proposed TFWO algorithm for extracting the optimal values of the parameters for various PV models are implemented on the real data of a 55 mm diameter commercial R.T.C. France solar cell and experimental data of a KC200GT module. Further, an assessment study is employed to show the capability of the proposed TFWO algorithm compared with several recent optimization techniques such as the marine predators algorithm (MPA), equilibrium optimization (EO), and manta ray foraging optimization (MRFO). For a fair performance evaluation, the comparative study is carried out with the same dataset and the same computation burden for the different optimization algorithms. Statistical analysis is also used to analyze the performance of the proposed TFWO against the other optimization algorithms. The findings show a high closeness between the estimated power–voltage (P–V) and current–voltage (I–V) curves achieved by the proposed TFWO compared with the experimental data as well as the competitive optimization algorithms, thanks to the effectiveness of the developed TFWO solution mechanism.


Author(s):  
Fahad Iqbal ◽  
Ankur Singh Rana ◽  
Shufali Ashraf Wani

The foremost issues of the twenty-first century are the ever-increasing challenging demand of electrical energy and controlling the emission of greenhouse gases (GHG). Along with these issues and with limited energy resources, it is imperative to look for non-conventional methods of power generation like from renewable energy resources. Microgrid has emerged as a new field that can meet the energy demand with a special emphasis on good power quality, reliability, and security. A major concern with the use of renewable energy resources is their intermittent nature which makes their integration and operation a challengeable task. Energy storage devices like batteries can be used to overcome the problem of intermittent nature of renewable energy resources. This chapter focusses on different aspects of renewable energy resources in detail. It analyzes the effectiveness of the proposed topology of the microgrid for health clinic load profile with the help of PVSYST software.


Sign in / Sign up

Export Citation Format

Share Document