scholarly journals Ensemble Negatively-Charged Nitrogen-Vacancy Centers in Type-Ib Diamond Created by High Fluence Electron Beam Irradiation

2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Shuya Ishii ◽  
Seiichi Saiki ◽  
Shinobu Onoda ◽  
Yuta Masuyama ◽  
Hiroshi Abe ◽  
...  

Electron beam irradiation into type-Ib diamond is known as a good method for the creation of high concentration negatively-charged nitrogen-vacancy (NV−) centers by which highly sensitive quantum sensors can be fabricated. In order to understand the creation mechanism of NV− centers, we study the behavior of substitutional isolated nitrogen (P1 centers) and NV− centers in type-Ib diamond, with an initial P1 concentration of 40–80 ppm by electron beam irradiation up to 8.0 × 1018 electrons/cm2. P1 concentration and NV− concentration were measured using electron spin resonance and photoluminescence measurements. P1 center count decreases with increasing irradiation fluence up to 8.0 × 1018 electrons/cm2. The rate of decrease in P1 is slightly lower at irradiation fluence above 4.0 × 1018 electrons/cm2 especially for samples of low initial P1 concentration. Comparing concentration of P1 centers with that of NV− centers, it suggests that a part of P1 centers plays a role in the formation of other defects. The usefulness of electron beam irradiation to type-Ib diamonds was confirmed by the resultant conversion efficiency from P1 to NV− center around 12–19%.

Carbon ◽  
2019 ◽  
Vol 143 ◽  
pp. 714-719 ◽  
Author(s):  
M. Capelli ◽  
A.H. Heffernan ◽  
T. Ohshima ◽  
H. Abe ◽  
J. Jeske ◽  
...  

Author(s):  
B. L. Armbruster ◽  
B. Kraus ◽  
M. Pan

One goal in electron microscopy of biological specimens is to improve the quality of data to equal the resolution capabilities of modem transmission electron microscopes. Radiation damage and beam- induced movement caused by charging of the sample, low image contrast at high resolution, and sensitivity to external vibration and drift in side entry specimen holders limit the effective resolution one can achieve. Several methods have been developed to address these limitations: cryomethods are widely employed to preserve and stabilize specimens against some of the adverse effects of the vacuum and electron beam irradiation, spot-scan imaging reduces charging and associated beam-induced movement, and energy-filtered imaging removes the “fog” caused by inelastic scattering of electrons which is particularly pronounced in thick specimens.Although most cryoholders can easily achieve a 3.4Å resolution specification, information perpendicular to the goniometer axis may be degraded due to vibration. Absolute drift after mechanical and thermal equilibration as well as drift after movement of a holder may cause loss of resolution in any direction.


Author(s):  
Wei-Chih Wang ◽  
Jian-Shing Luo

Abstract In this paper, we revealed p+/n-well and n+/p-well junction characteristic changes caused by electron beam (EB) irradiation. Most importantly, we found a device contact side junction characteristic is relatively sensitive to EB irradiation than its whole device characteristic; an order of magnitude excess current appears at low forward bias region after 1kV EB acceleration voltage irradiation (Vacc). Furthermore, these changes were well interpreted by our Monte Carlo simulation results, the Shockley-Read Hall (SRH) model and the Generation-Recombination (G-R) center trap theory. In addition, four essential examining items were suggested and proposed for EB irradiation damage origins investigation and evaluation. Finally, by taking advantage of the excess current phenomenon, a scanning electron microscope (SEM) passive voltage contrast (PVC) fault localization application at n-FET region was also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document