scholarly journals Utilization of Waste Cooking Oil via Recycling as Biofuel for Diesel Engines

Recycling ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 13
Author(s):  
Hoi Nguyen Xa ◽  
Thanh Nguyen Viet ◽  
Khanh Nguyen Duc ◽  
Vinh Nguyen Duy

In this study, waste cooking oil (WCO) was used to successfully manufacture catalyst cracking biodiesel in the laboratory. This study aims to evaluate and compare the influence of waste cooking oil synthetic diesel (WCOSD) with that of commercial diesel (CD) fuel on an engine’s operating characteristics. The second goal of this study is to compare the engine performance and temperature characteristics of cooling water and lubricant oil under various engine operating conditions of a test engine fueled by waste cooking oil and CD. The results indicated that the engine torque of the engine running with WCOSD dropped from 1.9 Nm to 5.4 Nm at all speeds, and its brake specific fuel consumption (BSFC) dropped at almost every speed. Thus, the thermal brake efficiency (BTE) of the engine fueled by WCOSD was higher at all engine speeds. Also, the engine torque of the WCOSD-fueled engine was lower than the engine torque of the CD-fueled engine at all engine speeds. The engine’s power dropped sequentially through 0.3 kW, 0.4 kW, 0.6 kW, 0.9 kW, 0.8 kW, 0.9 kW, 1.0 kW and 1.9 kW.

2020 ◽  
Vol 7 (3) ◽  
pp. 560-570
Author(s):  
Thanh Viet Nguyen ◽  
Khanh Duc Nguyen ◽  
Nang Xuan Ho ◽  
Vinh Duy Nguyen

Abstract Biodiesels produced from various feedstocks have been considered as alternative fuels used in internal combustion engines without major modifications. This research focuses on producing biodiesel from waste cooking oil (WCOSD) by the catalytic cracking method using MgO as the catalyst and comparing the engine operating characteristics of the test engine when using WCOSD and traditional diesel (CD) as test fuels. As a result, the brake power of the test engine fueled WCOSD, and traditional diesel is similar. However, the engine fuel consumption in the case of using WCOSD is slight increases in some operating conditions. Also, the nitrogen oxides emissions of the test engine fueled WCOSD are higher than those of CD at all tested conditions. The trend is opposite for hydrocarbon emission as the HC emission of the engine fueled by WCOSD reduces 26.3% on average. The smoke emission of the test engine in case of using WCOSD is lower 17% on average than that of CD. However, the carbon monoxide emissions are lower at the low and medium loads and higher at the full loads. These results show that the new biodiesel has the same characteristics as those of commercial biodiesel and can be used as fuel for diesel engines.


Author(s):  
Badal Dev Roy ◽  
R. Saravanan

The Turbocharger is a charge booster for internal combustion engines to ensure best engine performance at all speeds and road conditions especially at the higher load.  Random selection of turbocharger may lead to negative effects like surge and choke in the breathing of the engine. Appropriate selection or match of the turbocharger (Turbomatching) is a tedious task and expensive. But perfect match gives many distinguished advantages and it is a one time task per the engine kind. This study focuses to match the turbocharger to desired engine by simulation and on road test. The objective of work is to find the appropriateness of matching of turbochargers with trim 67 (B60J67), trim 68 (B60J68),  trim 70 (A58N70) and trim 72 (A58N72) for the TATA 497 TCIC -BS III engine. In the road-test (data-logger method) the road routes like highway and slope up were considered for evaluation. The operating conditions with respect various speeds, routes and simulated outputs were compared with the help of compressor map.


2015 ◽  
Vol 1113 ◽  
pp. 674-678
Author(s):  
Syarifah Yunus ◽  
Noriah Yusoff ◽  
Muhammad Faiz Fikri Ahmad Khaidzir ◽  
Siti Khadijah Alias ◽  
Freddawati Rashiddy Wong ◽  
...  

The continued using of petroleum energy as a sourced for fuel is widely recognized as unsustainable because of the decreasing of supplies while increasing of the demand. Therefore, it becomes a global agenda to develop a renewable, sustainable and alternative fuel to meets with all the demand. Thus, biodiesel seems to be one of the best choices. In Malaysia, the biodiesel used is from edible vegetable oil sources; palm oil. The uses of palm oil as biodiesel production source have been concern because of the competition with food materials. In this study, various types of biodiesel feedstock are being studied and compared with diesel. The purpose of this comparison is to obtain the optimum engine performance of these different types of biodiesel (edible, non-edible, waste cooking oil) on which are more suitable to be used as alternative fuel. The optimum engine performance effect can be obtains by considering the Brake Power (BP), Specific Fuel Consumption (SFC), Exhaust Gas Temperature (EGT) and Brake Thermal Efficiency (BTE).


2013 ◽  
Vol 848 ◽  
pp. 286-290 ◽  
Author(s):  
Hong Juan Ren ◽  
Di Ming Lou ◽  
Pi Qiang Tan ◽  
Zhi Yuan Hu

Urea dosing strategy for SCR is studied for a diesel engine fuelled with bio-diesel BD20. Bio-diesel BD20 is consisted of biofuels made from waste cooking oil and national V diesel, and biofuels accounts for 20% by volume. The results show that, bio-diesel engine torque decreases by a maximum of 0.55%, brake fuel consumption rate increases by a maximum of 0.53% ,when the urea dosing strategy is adjusted and the engine and SCR are not changed. ESC tests show that, the maximum of NOXconversion ratio is 95%, the minimum is 57%, and the average value is 74% under ESC 12 conditions except idling, the maximum of HC decrease ratio is 74%, the minimum is 35%, and the average value is 55%, when the urea is dosed. NOXemission is 1.55 g/(kW·h) in ESC test, NOXemission is 2 g/(kW·h) in ETC test, and NH3slip is lower than 10×10-6, which proves that the NOXemission from the engine fuelled with BD20 can meet national emission standards V by adjusting the urea dosing strategy.


Author(s):  
Omid Jahanian ◽  
Seyed Ali Jazayeri

Homogenous Charge Compression Ignition (HCCI) combustion is a promising concept to reduce engine emissions and fuel consumption. In this paper, a thermo-kinetic model is developed to study the operating characteristics of a natural gas HCCI engine. The zero-dimensional single zone model consist detail chemical kinetics of natural gas oxidation including 325 reactions with 53 chemical species, and is validated with experimental results of reference works for two different engines, Volvo TD 100 and Caterpillar 3500, in 5 operating conditions. Then, the influence of parameters such as manifold temperature/pressure and equivalence ratio on in-cylinder temperature/pressure trends and start of combustion is studied. Measurements for Volvo engine show that SOC occurs 3–5 CAD earlier with every 15K increase in initial temperature. These whole results are explained in detail to describe the engine performance thoroughly.


2021 ◽  
pp. 0958305X2110348
Author(s):  
Muhamad SN Awang ◽  
Nurin WM Zulkifli ◽  
Muhammad M Abbas ◽  
Syahir A Zulkifli ◽  
Mohd NAM Yusoff ◽  
...  

The main purposes of this research were to study the diesel engines' performance and emission characteristics of quaternary fuels, as well as to analyze their tribological properties. The quaternary comprised waste plastic pyrolysis oil, waste cooking oil biodiesel, palm oil biodiesel, and commercial diesel. Their compositions were analyzed by gas chromatography and mass spectrometry. By using mechanical stirring, four quaternary fuels with different compositions were prepared. Because Malaysia is expected to implement B30 (30% palm oil biodiesel content in diesel) in 2025, B30a (30% palm oil biodiesel and 70% commercial diesel) mixture was prepared as a reference fuel. In total, 5%, 10%, and 15% of each waste plastic pyrolysis oil and waste cooking oil biodiesel were mixed with palm oil biodiesel –commercial diesel mixture to improve fuel characteristics, engine performance, and emission parameters. The palm oil biodiesel of the quaternary fuel mixture was kept constant at 10%. The results were compared with B30a fuel and B10 (10% for palm oil biodiesel and 90% for diesel; commercial diesel). The findings indicated that compared with B30a fuel, the brake power and brake thermal efficiency of all quaternary fuel mixtures were increased by up to 2.78% and 9.81%, respectively. Compared with B30a, all quaternary fuels also showed up to a 6.31% reduction in brake-specific fuel consumption. Compared with B30a, the maximum carbon monoxide and carbon dioxide emissions of B40 (60% commercial diesel, 10% palm oil biodiesel, 15% waste plastic pyrolysis oil and 15% waste cooking oil biodiesel) quaternary fuel were reduced by 19.66% and 4.16%, respectively. The B20 (80% commercial diesel, 10% palm oil biodiesel, 5% waste plastic pyrolysis oil and 5% waste cooking oil biodiesel) quaternary blend showed a maximum reduction of 41.86% in hydrocarbon emissions collated to B30a. Compared with B10, the average coefficient of friction of the quaternary fuel mixture of B40, B30b (70% commercial diesel, 10% palm oil biodiesel, 10% waste plastic pyrolysis oil and 10% waste cooking oil biodiesel), and B20 were reduced by 3.01%, 1.20%, and 0.23%, respectively. Therefore, the quaternary blends show excellent utilization potential in diesel engine performance.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093045
Author(s):  
Muhammad Usman ◽  
Muhammad Wajid Saleem ◽  
Syed Saqib ◽  
Jamal Umer ◽  
Ahmad Naveed ◽  
...  

Considering the importance of alternative fuels in IC engines for environment safety, compressed natural gas has been extensively employed in SI engines. However, scarce efforts have been made to investigate the effect of compressed natural gas on engine lubricant oil for a long duration. In this regard, a comprehensive analysis has been made on the engine performance, emissions, and lubricant oil conditions using gasoline ( G)92 and compressed natural gas at different operating conditions using reliable sampling methods. The key parameters of the engine performance like brake power and brake-specific energy consumption were investigated at 80% throttle opening within 1500–4500 range of r/min. For the sake of emission tests, speed was varied uniformly by varying the load at a constant throttle. Furthermore, the engine was run at high and low loads for lubricant oil comparison. Although compressed natural gas showed a decrease in brake-specific energy consumption (7.94%) and emissions content, ( G)92 performed relatively better in the case of brake power (39.93% increase). Moreover, a significant improvement was observed for wear debris, lubricant oil physiochemical characteristics, and additives depletion in the case of compressed natural gas than those of ( G)92. The contents of metallic particles were decreased by 23.58%, 36.25%, 42.42%, and 66.67% for iron, aluminum, copper, and lead, respectively, for compressed natural gas.


Sign in / Sign up

Export Citation Format

Share Document