scholarly journals A Multiple Level-of-Detail 3D Data Transmission Approach for Low-Latency Remote Visualisation in Teleoperation Tasks

Robotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 89
Author(s):  
Salvador Pacheco-Gutierrez ◽  
Hanlin Niu ◽  
Ipek Caliskanelli ◽  
Robert Skilton

In robotic teleoperation, the knowledge of the state of the remote environment in real time is paramount. Advances in the development of highly accurate 3D cameras able to provide high-quality point clouds appear to be a feasible solution for generating live, up-to-date virtual environments. Unfortunately, the exceptional accuracy and high density of these data represent a burden for communications requiring a large bandwidth affecting setups where the local and remote systems are particularly geographically distant. This paper presents a multiple level-of-detail (LoD) compression strategy for 3D data based on tree-like codification structures capable of compressing a single data frame at multiple resolutions using dynamically configured parameters. The level of compression (resolution) of objects is prioritised based on: (i) placement on the scene; and (ii) the type of object. For the former, classical point cloud fitting and segmentation techniques are implemented; for the latter, user-defined prioritisation is considered. The results obtained are compared using a single LoD (whole-scene) compression technique previously proposed by the authors. Results showed a considerable improvement to the transmitted data size and updated frame rate while maintaining low distortion after decompression.

2021 ◽  
Vol 13 (11) ◽  
pp. 2195
Author(s):  
Shiming Li ◽  
Xuming Ge ◽  
Shengfu Li ◽  
Bo Xu ◽  
Zhendong Wang

Today, mobile laser scanning and oblique photogrammetry are two standard urban remote sensing acquisition methods, and the cross-source point-cloud data obtained using these methods have significant differences and complementarity. Accurate co-registration can make up for the limitations of a single data source, but many existing registration methods face critical challenges. Therefore, in this paper, we propose a systematic incremental registration method that can successfully register MLS and photogrammetric point clouds in the presence of a large number of missing data, large variations in point density, and scale differences. The robustness of this method is due to its elimination of noise in the extracted linear features and its 2D incremental registration strategy. There are three main contributions of our work: (1) the development of an end-to-end automatic cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and restore the scale; and (3) an incremental registration strategy that simplifies the complex registration process. The experimental results show that this method can successfully achieve cross-source data registration, while other methods have difficulty obtaining satisfactory registration results efficiently. Moreover, this method can be extended to more point-cloud sources.


Author(s):  
L. Zhang ◽  
P. van Oosterom ◽  
H. Liu

Abstract. Point clouds have become one of the most popular sources of data in geospatial fields due to their availability and flexibility. However, because of the large amount of data and the limited resources of mobile devices, the use of point clouds in mobile Augmented Reality applications is still quite limited. Many current mobile AR applications of point clouds lack fluent interactions with users. In our paper, a cLoD (continuous level-of-detail) method is introduced to filter the number of points to be rendered considerably, together with an adaptive point size rendering strategy, thus improve the rendering performance and remove visual artifacts of mobile AR point cloud applications. Our method uses a cLoD model that has an ideal distribution over LoDs, with which can remove unnecessary points without sudden changes in density as present in the commonly used discrete level-of-detail approaches. Besides, camera position, orientation and distance from the camera to point cloud model is taken into consideration as well. With our method, good interactive visualization of point clouds can be realized in the mobile AR environment, with both nice visual quality and proper resource consumption.


Author(s):  
E. Grilli ◽  
E. M. Farella ◽  
A. Torresani ◽  
F. Remondino

<p><strong>Abstract.</strong> In the last years, the application of artificial intelligence (Machine Learning and Deep Learning methods) for the classification of 3D point clouds has become an important task in modern 3D documentation and modelling applications. The identification of proper geometric and radiometric features becomes fundamental to classify 2D/3D data correctly. While many studies have been conducted in the geospatial field, the cultural heritage sector is still partly unexplored. In this paper we analyse the efficacy of the geometric covariance features as a support for the classification of Cultural Heritage point clouds. To analyse the impact of the different features calculated on spherical neighbourhoods at various radius sizes, we present results obtained on four different heritage case studies using different features configurations.</p>


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 563 ◽  
Author(s):  
J. Osuna-Coutiño ◽  
Jose Martinez-Carranza

High-Level Structure (HLS) extraction in a set of images consists of recognizing 3D elements with useful information to the user or application. There are several approaches to HLS extraction. However, most of these approaches are based on processing two or more images captured from different camera views or on processing 3D data in the form of point clouds extracted from the camera images. In contrast and motivated by the extensive work developed for the problem of depth estimation in a single image, where parallax constraints are not required, in this work, we propose a novel methodology towards HLS extraction from a single image with promising results. For that, our method has four steps. First, we use a CNN to predict the depth for a single image. Second, we propose a region-wise analysis to refine depth estimates. Third, we introduce a graph analysis to segment the depth in semantic orientations aiming at identifying potential HLS. Finally, the depth sections are provided to a new CNN architecture that predicts HLS in the shape of cubes and rectangular parallelepipeds.


Smart Cities ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 106-117
Author(s):  
Chengxi Siew ◽  
Pankaj Kumar

Spatial Data Infrastructures (SDIs) are frequently used to exchange 2D & 3D data, in areas such as city planning, disaster management, urban navigation and many more. City Geography Mark-up Language (CityGML), an Open Geospatial Consortium (OGC) standard has been developed for the storage and exchange of 3D city models. Due to its encoding in XML based format, the data transfer efficiency is reduced which leads to data storage issues. The use of CityGML for analysis purposes is limited due to its inefficiency in terms of file size and bandwidth consumption. This paper introduces XML based compression technique and elaborates how data efficiency can be achieved with the use of schema-aware encoder. We particularly present CityGML Schema Aware Compressor (CitySAC), which is a compression approach for CityGML data transaction within SDI framework. Our test results show that the encoding system produces smaller file size in comparison with existing state-of-the-art compression methods. The encoding process significantly reduces the file size up to 7–10% of the original data.


2005 ◽  
Vol 44 (02) ◽  
pp. 233-238 ◽  
Author(s):  
M. C. Barba ◽  
E. Blasi ◽  
M. Cafaro ◽  
S. Fiore ◽  
M. Mirto ◽  
...  

Summary Background: In health applications, and elsewhere, 3D data sets are increasingly accessed through the Internet. To reduce the transfer time while maintaining an unaltered 3D model, adequate compression and decompression techniques are needed. Recently, Grid technologies have been integrated with Web Services technologies to provide a framework for interoperable application-to-application interaction. Objectives: The paper describes an implementation of the Edgebreaker compression technique exploiting web services technology and presents a novel approach for using such services in a Grid Portal. The Grid portal, developed at the CACT/ISUFI of the University of Lecce, allows the processing and delivery of biomedical images (CT – computerized tomography – and MRI – magnetic resonance images) in a distributed environment, using the power and security of computational Grids. Methods: The Edgebreaker Compression Web Service has been deployed on a Grid portal and allows compressing and decompressing 3D data sets using the Globus toolkit GSI (Globus Security Infrastructure) protocol. Moreover, the classical algorithm has been modified extending the compression to files containing more than one object. Results and Conclusions: An implementation of the Edgebreaker compression technique and related experimental results are presented. A novel approach for using the compression web service in a Grid portal allowing storing and preprocessing of huge 3D data sets, and subsequent efficient transmission of results for remote visualization is also described.


2019 ◽  
Vol 11 (12) ◽  
pp. 1471 ◽  
Author(s):  
Grazia Tucci ◽  
Antonio Gebbia ◽  
Alessandro Conti ◽  
Lidia Fiorini ◽  
Claudio Lubello

The monitoring and metric assessment of piles of natural or man-made materials plays a fundamental role in the production and management processes of multiple activities. Over time, the monitoring techniques have undergone an evolution linked to the progress of measure and data processing techniques; starting from classic topography to global navigation satellite system (GNSS) technologies up to the current survey systems like laser scanner and close-range photogrammetry. Last-generation 3D data management software allow for the processing of increasingly truer high-resolution 3D models. This study shows the results of a test for the monitoring and computing of stockpile volumes of material coming from the differentiated waste collection inserted in the recycling chain, performed by means of an unmanned aerial vehicle (UAV) photogrammetric survey and the generation of 3D models starting from point clouds. The test was carried out with two UAV flight sessions, with vertical and oblique camera configurations, and using a terrestrial laser scanner for measuring the ground control points and as ground truth for testing the two survey configurations. The computations of the volumes were carried out using two software and comparisons were made both with reference to the different survey configurations and to the computation software.


Author(s):  
F. Remondino ◽  
M. Gaiani ◽  
F. Apollonio ◽  
A. Ballabeni ◽  
M. Ballabeni ◽  
...  

In the last years the image-based pipeline for 3D reconstruction purposes has received large interest leading to fully automated methodologies able to process large image datasets and deliver 3D products with a level of detail and precision variable according to the applications. Different open issues still exist, in particular when dealing with the 3D surveying and modeling of large and complex scenarios, like historical porticoes. The paper presents an evaluation of various surveying methods for the geometric documentation of ca 40km of historical porticoes in Bologna (Italy). Finally, terrestrial photogrammetry was chosen as the most flexible and productive technique in order to deliver 3D results in form of colored point clouds or textured 3D meshes accessible on the web. The presented digital products are a complementary material for the final candidature of the porticoes as UNESCO WHS.


Author(s):  
R. Ravanelli ◽  
A. Nascetti ◽  
M. Crespi

Today range cameras are widespread low-cost sensors based on two different principles of operation: we can distinguish between Structured Light (SL) range cameras (Kinect v1, Structure Sensor, ...) and Time Of Flight (ToF) range cameras (Kinect v2, ...). Both the types are easy to use 3D scanners, able to reconstruct dense point clouds at high frame rate. However the depth maps obtained are often noisy and not enough accurate, therefore it is generally essential to improve their quality. Standard RGB cameras can be a valuable solution to solve such issue. The aim of this paper is therefore to evaluate the integration feasibility of these two different 3D modelling techniques, characterized by complementary features and based on standard low-cost sensors. <br><br> For this purpose, a 3D model of a DUPLO<sup>TM</sup> bricks construction was reconstructed both with the Kinect v2 range camera and by processing one stereo pair acquired with a Canon Eos 1200D DSLR camera. The scale of the photgrammetric model was retrieved from the coordinates measured by Kinect v2. The preliminary results are encouraging and show that the foreseen integration could lead to an higher metric accuracy and a major level of completeness with respect to that obtained by using only separated techniques.


Author(s):  
D. Hoffmeister ◽  
S. Zellmann ◽  
K. Kindermann ◽  
A. Pastoors ◽  
U. Lang ◽  
...  

Terrestrial laser scanning was conducted to document and analyse sites of geoarchaeological interest in Jordan, Egypt and Spain. In those cases, the terrestrial laser scanner LMS-Z420i from Riegl was used in combination with an accurate RTK-GPS for georeferencing of the point clouds. Additionally, local surveying networks were integrated by established transformations and used for indirect registration purposes. All data were integrated in a workflow that involves different software and according results. The derived data were used for the documentation of the sites by accurate plans and cross-sections. Furthermore, the 3D data were analysed for geoarchaeological research problems, such as volumetric determinations, the ceiling thickness of a cave and lighting simulations based on path tracing. The method was reliable in harsh environmental conditions, but the weight of the instrument, the measuring time and the minimum measurement distance were a drawback. However, generally an accurate documentation of the sites was possible. Overall, the integration in a 3D GIS is easily possible by the accurate georeference of the derived data. In addition, local survey results are also implemented by the established transformations. Enhanced analyses based on the derived 3D data shows promising results.


Sign in / Sign up

Export Citation Format

Share Document