scholarly journals Feature Comparison and Optimization for 30-M Winter Wheat Mapping Based on Landsat-8 and Sentinel-2 Data Using Random Forest Algorithm

2019 ◽  
Vol 11 (5) ◽  
pp. 535 ◽  
Author(s):  
Yuanhuizi He ◽  
Changlin Wang ◽  
Fang Chen ◽  
Huicong Jia ◽  
Dong Liang ◽  
...  

Winter wheat cropland is one of the most important agricultural land-cover types affected by the global climate and human activity. Mapping 30-m winter wheat cropland can provide beneficial reference information that is necessary for understanding food security. To date, machine learning algorithms have become an effective tool for the rapid identification of winter wheat at regional scales. Algorithm implementation is based on constructing and selecting many features, which makes feature set optimization an important issue worthy of discussion. In this study, the accurate mapping of winter wheat at 30-m resolution was realized using Landsat-8 Operational Land Imager (OLI), Sentinel-2 Multispectral Imager (MSI) data, and a random forest algorithm. This paper also discusses the optimal combination of features suitable for cropland extraction. The results revealed that: (1) the random forest algorithm provided robust performance using multi-features (MFs), multi-feature subsets (MFSs), and multi-patterns (MPs) as input parameters. Moreover, the highest accuracy (94%) for winter wheat extraction occurred in three zones, including: pure farmland, urban mixed areas, and forest areas. (2) Spectral reflectance and the crop growth period were the most essential features for crop extraction. The MFSs combined with the three to four feature types enabled the high-precision extraction of 30-m winter wheat plots. (3) The extraction accuracy of winter wheat in three zones with multiple geographical environments was affected by certain dominant features, including spectral bands (B), spectral indices (S), and time-phase characteristics (D). Therefore, we can improve the winter wheat mapping accuracy of the three regional types by improving the spectral resolution, constructing effective spectral indices, and enriching vegetation information. The results of this paper can help effectively construct feature sets using the random forest algorithm, thus simplifying the feature construction workload and ensuring high-precision extraction results in future winter wheat mapping research.

2019 ◽  
Vol 11 (24) ◽  
pp. 2925 ◽  
Author(s):  
Lucas Prado Osco ◽  
Ana Paula Marques Ramos ◽  
Danilo Roberto Pereira ◽  
Érika Akemi Saito Moriya ◽  
Nilton Nobuhiro Imai ◽  
...  

The traditional method of measuring nitrogen content in plants is a time-consuming and labor-intensive task. Spectral vegetation indices extracted from unmanned aerial vehicle (UAV) images and machine learning algorithms have been proved effective in assisting nutritional analysis in plants. Still, this analysis has not considered the combination of spectral indices and machine learning algorithms to predict nitrogen in tree-canopy structures. This paper proposes a new framework to infer the nitrogen content in citrus-tree at a canopy-level using spectral vegetation indices processed with the random forest algorithm. A total of 33 spectral indices were estimated from multispectral images acquired with a UAV-based sensor. Leaf samples were gathered from different planting-fields and the leaf nitrogen content (LNC) was measured in the laboratory, and later converted into the canopy nitrogen content (CNC). To evaluate the robustness of the proposed framework, we compared it with other machine learning algorithms. We used 33,600 citrus trees to evaluate the performance of the machine learning models. The random forest algorithm had higher performance in predicting CNC than all models tested, reaching an R2 of 0.90, MAE of 0.341 g·kg−1 and MSE of 0.307 g·kg−1. We demonstrated that our approach is able to reduce the need for chemical analysis of the leaf tissue and optimizes citrus orchard CNC monitoring.


2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.


2020 ◽  
Vol 12 (20) ◽  
pp. 3376 ◽  
Author(s):  
Giovanni Romano ◽  
Giovanni Francesco Ricci ◽  
Francesco Gentile

In recent decades, technological advancements in sensors have generated increasing interest in remote sensing data for the study of vegetation features. Image pixel resolution can affect data analysis and results. This study evaluated the potential of three satellite images of differing resolution (Landsat 8, 30 m; Sentinel-2, 10 m; and Pleiades 1A, 2 m) in assessing the Leaf Area Index (LAI) of riparian vegetation in two Mediterranean streams, and in both a winter wheat field and a deciduous forest used to compare the accuracy of the results. In this study, three different retrieval methods—the Caraux-Garson, the Lambert-Beer, and the Campbell and Norman equations—are used to estimate LAI from the Normalized Difference Vegetation Index (NDVI). To validate sensor data, LAI values were measured in the field using the LAI 2200 Plant Canopy Analyzer. The statistical indices showed a better performance for Pleiades 1A and Landsat 8 images, the former particularly in sites characterized by high canopy closure, such as deciduous forests, or in areas with stable riparian vegetation, the latter where stable reaches of riparian vegetation cover are almost absent or very homogenous, as in winter wheat fields. Sentinel-2 images provided more accurate results in terms of the range of LAI values. Considering the different types of satellite imagery, the Lambert-Beer equation generally performed best in estimating LAI from the NDVI, especially in areas that are geomorphologically stable or have a denser vegetation cover, such as deciduous forests.


Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 21 ◽  
Author(s):  
Francisco Rodríguez-Puerta ◽  
Rafael Alonso Ponce ◽  
Fernando Pérez-Rodríguez ◽  
Beatriz Águeda ◽  
Saray Martín-García ◽  
...  

Controlling vegetation fuels around human settlements is a crucial strategy for reducing fire severity in forests, buildings and infrastructure, as well as protecting human lives. Each country has its own regulations in this respect, but they all have in common that by reducing fuel load, we in turn reduce the intensity and severity of the fire. The use of Unmanned Aerial Vehicles (UAV)-acquired data combined with other passive and active remote sensing data has the greatest performance to planning Wildland-Urban Interface (WUI) fuelbreak through machine learning algorithms. Nine remote sensing data sources (active and passive) and four supervised classification algorithms (Random Forest, Linear and Radial Support Vector Machine and Artificial Neural Networks) were tested to classify five fuel-area types. We used very high-density Light Detection and Ranging (LiDAR) data acquired by UAV (154 returns·m−2 and ortho-mosaic of 5-cm pixel), multispectral data from the satellites Pleiades-1B and Sentinel-2, and low-density LiDAR data acquired by Airborne Laser Scanning (ALS) (0.5 returns·m−2, ortho-mosaic of 25 cm pixels). Through the Variable Selection Using Random Forest (VSURF) procedure, a pre-selection of final variables was carried out to train the model. The four algorithms were compared, and it was concluded that the differences among them in overall accuracy (OA) on training datasets were negligible. Although the highest accuracy in the training step was obtained in SVML (OA=94.46%) and in testing in ANN (OA=91.91%), Random Forest was considered to be the most reliable algorithm, since it produced more consistent predictions due to the smaller differences between training and testing performance. Using a combination of Sentinel-2 and the two LiDAR data (UAV and ALS), Random Forest obtained an OA of 90.66% in training and of 91.80% in testing datasets. The differences in accuracy between the data sources used are much greater than between algorithms. LiDAR growth metrics calculated using point clouds in different dates and multispectral information from different seasons of the year are the most important variables in the classification. Our results support the essential role of UAVs in fuelbreak planning and management and thus, in the prevention of forest fires.


2020 ◽  
Vol 12 (23) ◽  
pp. 3933
Author(s):  
Anggun Tridawati ◽  
Ketut Wikantika ◽  
Tri Muji Susantoro ◽  
Agung Budi Harto ◽  
Soni Darmawan ◽  
...  

Indonesia is the world’s fourth largest coffee producer. Coffee plantations cover 1.2 million ha of the country with a production of 500 kg/ha. However, information regarding the distribution of coffee plantations in Indonesia is limited. This study aimed to assess the accuracy of classification model and determine its important variables for mapping coffee plantations. The model obtained 29 variables which derived from the integration of multi-resolution, multi-temporal, and multi-sensor remote sensing data, namely, pan-sharpened GeoEye-1, multi-temporal Sentinel 2, and DEMNAS. Applying a random forest algorithm (tree = 1000, mtry = all variables, minimum node size: 6), this model achieved overall accuracy, kappa statistics, producer accuracy, and user accuracy of 79.333%, 0.774, 92.000%, and 90.790%, respectively. In addition, 12 most important variables achieved overall accuracy, kappa statistics, producer accuracy, and user accuracy 79.333%, 0.774, 91.333%, and 84.570%, respectively. Our results indicate that random forest algorithm is efficient in mapping coffee plantations in an agroforestry system.


2020 ◽  
Vol 12 (21) ◽  
pp. 3539
Author(s):  
Haifeng Tian ◽  
Jie Pei ◽  
Jianxi Huang ◽  
Xuecao Li ◽  
Jian Wang ◽  
...  

Garlic and winter wheat are major economic and grain crops in China, and their boundaries have increased substantially in recent decades. Updated and accurate garlic and winter wheat maps are critical for assessing their impacts on society and the environment. Remote sensing imagery can be used to monitor spatial and temporal changes in croplands such as winter wheat and maize. However, to our knowledge, few studies are focusing on garlic area mapping. Here, we proposed a method for coupling active and passive satellite imagery for the identification of both garlic and winter wheat in Northern China. First, we used passive satellite imagery (Sentinel-2 and Landsat-8 images) to extract winter crops (garlic and winter wheat) with high accuracy. Second, we applied active satellite imagery (Sentinel-1 images) to distinguish garlic from winter wheat. Third, we generated a map of the garlic and winter wheat by coupling the above two classification results. For the evaluation of classification, the overall accuracy was 95.97%, with a kappa coefficient of 0.94 by eighteen validation quadrats (3 km by 3 km). The user’s and producer’s accuracies of garlic are 95.83% and 95.85%, respectively; and for the winter wheat, these two accuracies are 97.20% and 97.45%, respectively. This study provides a practical exploration of targeted crop identification in mixed planting areas using multisource remote sensing data.


2019 ◽  
Vol 20 (S2) ◽  
Author(s):  
Varun Khanna ◽  
Lei Li ◽  
Johnson Fung ◽  
Shoba Ranganathan ◽  
Nikolai Petrovsky

Abstract Background Toll-like receptor 9 is a key innate immune receptor involved in detecting infectious diseases and cancer. TLR9 activates the innate immune system following the recognition of single-stranded DNA oligonucleotides (ODN) containing unmethylated cytosine-guanine (CpG) motifs. Due to the considerable number of rotatable bonds in ODNs, high-throughput in silico screening for potential TLR9 activity via traditional structure-based virtual screening approaches of CpG ODNs is challenging. In the current study, we present a machine learning based method for predicting novel mouse TLR9 (mTLR9) agonists based on features including count and position of motifs, the distance between the motifs and graphically derived features such as the radius of gyration and moment of Inertia. We employed an in-house experimentally validated dataset of 396 single-stranded synthetic ODNs, to compare the results of five machine learning algorithms. Since the dataset was highly imbalanced, we used an ensemble learning approach based on repeated random down-sampling. Results Using in-house experimental TLR9 activity data we found that random forest algorithm outperformed other algorithms for our dataset for TLR9 activity prediction. Therefore, we developed a cross-validated ensemble classifier of 20 random forest models. The average Matthews correlation coefficient and balanced accuracy of our ensemble classifier in test samples was 0.61 and 80.0%, respectively, with the maximum balanced accuracy and Matthews correlation coefficient of 87.0% and 0.75, respectively. We confirmed common sequence motifs including ‘CC’, ‘GG’,‘AG’, ‘CCCG’ and ‘CGGC’ were overrepresented in mTLR9 agonists. Predictions on 6000 randomly generated ODNs were ranked and the top 100 ODNs were synthesized and experimentally tested for activity in a mTLR9 reporter cell assay, with 91 of the 100 selected ODNs showing high activity, confirming the accuracy of the model in predicting mTLR9 activity. Conclusion We combined repeated random down-sampling with random forest to overcome the class imbalance problem and achieved promising results. Overall, we showed that the random forest algorithm outperformed other machine learning algorithms including support vector machines, shrinkage discriminant analysis, gradient boosting machine and neural networks. Due to its predictive performance and simplicity, the random forest technique is a useful method for prediction of mTLR9 ODN agonists.


Sign in / Sign up

Export Citation Format

Share Document