scholarly journals Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review

2019 ◽  
Vol 11 (6) ◽  
pp. 676 ◽  
Author(s):  
Theodora Angelopoulou ◽  
Nikolaos Tziolas ◽  
Athanasios Balafoutis ◽  
George Zalidis ◽  
Dionysis Bochtis

Towards the need for sustainable development, remote sensing (RS) techniques in the Visible-Near Infrared–Shortwave Infrared (VNIR–SWIR, 400–2500 nm) region could assist in a more direct, cost-effective and rapid manner to estimate important indicators for soil monitoring purposes. Soil reflectance spectroscopy has been applied in various domains apart from laboratory conditions, e.g., sensors mounted on satellites, aircrafts and Unmanned Aerial Systems. The aim of this review is to illustrate the research made for soil organic carbon estimation, with the use of RS techniques, reporting the methodology and results of each study. It also aims to provide a comprehensive introduction in soil spectroscopy for those who are less conversant with the subject. In total, 28 journal articles were selected and further analysed. It was observed that prediction accuracy reduces from Unmanned Aerial Systems (UASs) to satellite platforms, though advances in machine learning techniques could further assist in the generation of better calibration models. There are some challenges concerning atmospheric, radiometric and geometric corrections, vegetation cover, soil moisture and roughness that still need to be addressed. The advantages and disadvantages of each approach are highlighted and future considerations are also discussed at the end.

2015 ◽  
Vol 3 (2) ◽  
pp. 58-67 ◽  
Author(s):  
Jan Rudolf Karl Lehmann ◽  
Keturah Zoe Smithson ◽  
Torsten Prinz

Remote sensing techniques have become an increasingly important tool for surveying archaeological sites. However, budgeting issues in archaeological research often limit the application of satellite or airborne imagery. Unmanned aerial systems (UAS) provide a flexible, quick, and more economical alternative to commonly used remote sensing techniques. In this study, the buried features of the archaeological site of the Kleinburlo monastery, near Münster, Germany, were identified using high-resolution color–infrared (CIR) images collected from a UAS platform. Based on these CIR images, a modified normalised difference vegetation index (NDVIblue) was calculated, showing reflectance spectra of vegetation anomalies caused by water stress. In the presented study, the vegetation growing on top of the buried walls was better nourished than the surrounding plants because very wet conditions over the days previous to data collection caused higher levels of water stress in the surrounding water-drenched land. This difference in water stress was a good indicator for detecting archaeological remains.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Reuben N. Okparanma ◽  
Abdul M. Mouazen

Visible and near-infrared (VisNIR) spectroscopy is becoming recognised by soil scientists as a rapid and cost-effective measurement method for hydrocarbons in petroleum-contaminated soils. This study investigated the potential application of VisNIR spectroscopy (350–2500 nm) for the prediction of phenanthrene, a polycyclic aromatic hydrocarbon (PAH), in soils. A total of 150 diesel-contaminated soil samples were used in the investigation. Partial least-squares (PLS) regression analysis with full cross-validation was used to develop models to predict the PAH compound. Results showed that the PAH compound was predicted well with residual prediction deviation of 2.0–2.32, root-mean-square error of prediction of 0.21–0.25 mg kg−1, and coefficient of determination (r2) of 0.75–0.83. The mechanism of prediction was attributed to covariation of the PAH with clay and soil organic carbon. Overall, the results demonstrated that the methodology may be used for predicting phenanthrene in soils utilizing the interrelationship between clay and soil organic carbon.


CATENA ◽  
2021 ◽  
Vol 205 ◽  
pp. 105442
Author(s):  
Xianglin He ◽  
Lin Yang ◽  
Anqi Li ◽  
Lei Zhang ◽  
Feixue Shen ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 769
Author(s):  
Xiaohang Li ◽  
Jianli Ding ◽  
Jie Liu ◽  
Xiangyu Ge ◽  
Junyong Zhang

As an important evaluation index of soil quality, soil organic carbon (SOC) plays an important role in soil health, ecological security, soil material cycle and global climate cycle. The use of multi-source remote sensing on soil organic carbon distribution has a certain auxiliary effect on the study of soil organic carbon storage and the regional ecological cycle. However, the study on SOC distribution in Ebinur Lake Basin in arid and semi-arid regions is limited to the mapping of measured data, and the soil mapping of SOC using remote sensing data needs to be studied. Whether different machine learning methods can improve prediction accuracy in mapping process is less studied in arid areas. Based on that, combined with the proposed problems, this study selected the typical area of the Ebinur Lake Basin in the arid region as the study area, took the sentinel data as the main data source, and used the Sentinel-1A (radar data), the Sentinel-2A and the Sentinel-3A (multispectral data), combined with 16 kinds of DEM derivatives and climate data (annual average temperature MAT, annual average precipitation MAP) as analysis. The five different types of data are reconstructed by spatial data and divided into four spatial resolutions (10, 100, 300, and 500 m). Seven models are constructed and predicted by machine learning methods RF and Cubist. The results show that the prediction accuracy of RF model is better than that of Cubist model, indicating that RF model is more suitable for small areas in arid areas. Among the three data sources, Sentinel-1A has the highest SOC prediction accuracy of 0.391 at 10 m resolution under the RF model. The results of the importance of environmental variables show that the importance of Flow Accumulation is higher in the RF model and the importance of SLOP in the DEM derivative is higher in the Cubist model. In the prediction results, SOC is mainly distributed in oasis and regions with more human activities, while SOC is less distributed in other regions. This study provides a certain reference value for the prediction of small-scale soil organic carbon spatial distribution by means of remote sensing and environmental factors.


Geoderma ◽  
2012 ◽  
Vol 183-184 ◽  
pp. 41-48 ◽  
Author(s):  
A.H. Cambule ◽  
D.G. Rossiter ◽  
J.J. Stoorvogel ◽  
E.M.A. Smaling

2014 ◽  
Vol 7 (3) ◽  
pp. 1197-1210 ◽  
Author(s):  
M. Nussbaum ◽  
A. Papritz ◽  
A. Baltensweiler ◽  
L. Walthert

Abstract. Accurate estimates of soil organic carbon (SOC) stocks are required to quantify carbon sources and sinks caused by land use change at national scale. This study presents a novel robust kriging method to precisely estimate regional and national mean SOC stocks, along with truthful standard errors. We used this new approach to estimate mean forest SOC stock for Switzerland and for its five main ecoregions. Using data of 1033 forest soil profiles, we modelled stocks of two compartments (0–30, 0–100 cm depth) of mineral soils. Log-normal regression models that accounted for correlation between SOC stocks and environmental covariates and residual (spatial) auto-correlation were fitted by a newly developed robust restricted maximum likelihood method, which is insensitive to outliers in the data. Precipitation, near-infrared reflectance, topographic and aggregated information of a soil and a geotechnical map were retained in the models. Both models showed weak but significant residual autocorrelation. The predictive power of the fitted models, evaluated by comparing predictions with independent data of 175 soil profiles, was moderate (robust R2 = 0.34 for SOC stock in 0–30 cm and R2 = 0.40 in 0–100 cm). Prediction standard errors (SE), validated by comparing point prediction intervals with data, proved to be conservative. Using the fitted models, we mapped forest SOC stock by robust external-drift point kriging at high resolution across Switzerland. Predicted mean stocks in 0–30 and 0–100 cm depth were equal to 7.99 kg m−2 (SE 0.15 kg m−2) and 12.58 kg m−2 (SE 0.24 kg m−2), respectively. Hence, topsoils store about 64% of SOC stocks down to 100 cm depth. Previous studies underestimated SOC stocks of topsoil slightly and those of subsoils strongly. The comparison further revealed that our estimates have substantially smaller SE than previous estimates.


Sign in / Sign up

Export Citation Format

Share Document