scholarly journals Field Intercomparison of Radiometers Used for Satellite Validation in the 400–900 nm Range

2019 ◽  
Vol 11 (9) ◽  
pp. 1129 ◽  
Author(s):  
Viktor Vabson ◽  
Joel Kuusk ◽  
Ilmar Ansko ◽  
Riho Vendt ◽  
Krista Alikas ◽  
...  

An intercomparison of radiance and irradiance ocean color radiometers (the second laboratory comparison exercise—LCE-2) was organized within the frame of the European Space Agency funded project Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) May 8–13, 2017 at Tartu Observatory, Estonia. LCE-2 consisted of three sub-tasks: (1) SI-traceable radiometric calibration of all the participating radiance and irradiance radiometers at the Tartu Observatory just before the comparisons; (2) indoor, laboratory intercomparison using stable radiance and irradiance sources in a controlled environment; (3) outdoor, field intercomparison of natural radiation sources over a natural water surface. The aim of the experiment was to provide a link in the chain of traceability from field measurements of water reflectance to the uniform SI-traceable calibration, and after calibration to verify whether different instruments measuring the same object provide results consistent within the expected uncertainty limits. This paper describes the third phase of LCE-2: The results of the field experiment. The calibration of radiometers and laboratory comparison experiment are presented in a related paper of the same journal issue. Compared to the laboratory comparison, the field intercomparison has demonstrated substantially larger variability between freshly calibrated sensors, because the targets and environmental conditions during radiometric calibration were different, both spectrally and spatially. Major differences were found for radiance sensors measuring a sunlit water target at viewing zenith angle of 139° because of the different fields of view. Major differences were found for irradiance sensors because of imperfect cosine response of diffusers. Variability between individual radiometers did depend significantly also on the type of the sensor and on the specific measurement target. Uniform SI traceable radiometric calibration ensuring fairly good consistency for indoor, laboratory measurements is insufficient for outdoor, field measurements, mainly due to the different angular variability of illumination. More stringent specifications and individual testing of radiometers for all relevant systematic effects (temperature, nonlinearity, spectral stray light, etc.) are needed to reduce biases between instruments and better quantify measurement uncertainties.

2019 ◽  
Vol 11 (9) ◽  
pp. 1101 ◽  
Author(s):  
Viktor Vabson ◽  
Joel Kuusk ◽  
Ilmar Ansko ◽  
Riho Vendt ◽  
Krista Alikas ◽  
...  

An intercomparison of radiance and irradiance ocean color radiometers (The Second Laboratory Comparison Exercise—LCE-2) was organized within the frame of the European Space Agency funded project Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) May 8–13, 2017 at Tartu Observatory, Estonia. LCE-2 consisted of three sub-tasks: 1) SI-traceable radiometric calibration of all the participating radiance and irradiance radiometers at the Tartu Observatory just before the comparisons; 2) Indoor intercomparison using stable radiance and irradiance sources in controlled environment; and 3) Outdoor intercomparison of natural radiation sources over terrestrial water surface. The aim of the experiment was to provide one link in the chain of traceability from field measurements of water reflectance to the uniform SI-traceable calibration, and after calibration to verify whether different instruments measuring the same object provide results consistent within the expected uncertainty limits. This paper describes the activities and results of the first two phases of LCE-2: the SI-traceable radiometric calibration and indoor intercomparison, the results of outdoor experiment are presented in a related paper of the same journal issue. The indoor experiment of the LCE-2 has proven that uniform calibration just before the use of radiometers is highly effective. Distinct radiometers from different manufacturers operated by different scientists can yield quite close radiance and irradiance results (standard deviation s < 1%) under defined conditions. This holds when measuring stable lamp-based targets under stationary laboratory conditions with all the radiometers uniformly calibrated against the same standards just prior to the experiment. In addition, some unification of measurement and data processing must be settled. Uncertainty of radiance and irradiance measurement under these conditions largely consists of the sensor’s calibration uncertainty and of the spread of results obtained by individual sensors measuring the same object.


1990 ◽  
Vol 123 ◽  
pp. 205-214 ◽  
Author(s):  
C.J. Cesarsky ◽  
M.F. Kessler

AbstractThe Infrared Space Observatory (ISO), a fully approved and funded project of the European Space Agency (ESA), is an astronomical satellite, which will operate at wavelengths from 3–200 μm. ISO will provide astronomers with a unique facility of unprecedented sensitivity for a detailed exploration of the universe ranging from objects in the solar system right out to distant extragalactic sources. The satellite essentially consists of a large cryostat containing at launch about 2300 litres of superfluid helium to maintain the Ritchey-Chrétien telescope, the scientific instruments and the optical baffles at temperatures between 2K and 8K. The telescope has a 60-cm diameter primary mirror and is diffraction-limited at a wavelength of 5μm. A pointing accuracy of a few arc seconds is provided by a three-axis-stabilisation system consisting of reaction wheels, gyros and optical sensors. ISO’s instrument complement consists of four instruments, namely: a photo-polarimeter (3–200μm), a camera (3–17μm), a short wavelength spectrometer (3–45μm) and a long wavelength spectrometer (45–180μm). These instruments are being built by international consortia of scientific institutes and will be delivered to ESA for in-orbit operations. ISO will be launched in 1993 by an Ariane 4 into an elliptical orbit (apogee 70000km and perigee 1000km) and will be operational for at least 18 months. In keeping with ISO’s role as an observatory, two-thirds of its observing time will be made available to the european and american astronomical community.


2019 ◽  
Vol 11 (17) ◽  
pp. 1993 ◽  
Author(s):  
Mertikas ◽  
Donlon ◽  
Vuilleumier ◽  
Cullen ◽  
Féménias ◽  
...  

Satellite altimeters have been producing, as of 1992, an amazing and historic record of sea level changes. As Europe moves into full operational altimetry, it has become imperative that the quality of these monitoring signals with their uncertainties should be controlled, fully and properly descripted, but also traced and connected to undisputable standards and units. Excellent quality is the foundation of these operational services of Europe in altimetry. In line with the above, the strategy of the Fiducial Reference Measurements for Altimetry (FRM4ALT) has been introduced to address and to achieve reliable, long-term, consistent, and undisputable satellite altimetry products for Earth observation and for sea-level change monitoring. FRM4ALT has been introduced and implemented by the European Space Agency in an effort to reach a uniform and absolute standardization for calibrating satellite altimeters. This paper examines the problem and the need behind the FRM4ALT principle to achieve an objective Earth observation. Secondly, it describes the expected FRM products and services which are to come into being out of this new observational strategy. Thirdly, it outlines the technology and the services required for reaching this goal. And finally, it elaborates upon the necessary resources, skills, partnerships, and facilities for establishing FRM standardization for altimetry.


2011 ◽  
Vol 4 (9) ◽  
pp. 1841-1853 ◽  
Author(s):  
I. Petropavlovskikh ◽  
R. Evans ◽  
G. McConville ◽  
S. Oltmans ◽  
D. Quincy ◽  
...  

Abstract. Remote sounding methods are used to derive ozone profile and column information from various ground-based and satellite measurements. Vertical ozone profiles measured in Dobson units (DU) are currently retrieved based on laboratory measurements of the ozone absorption cross-section spectrum between 270 and 400 nm published in 1985 by Bass and Paur (BP). Recently, the US National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) proposed using the set of ozone cross-section measurements made at the Daumont laboratory in 1992 (BDM) for revising the Aura Ozone Monitoring Instrument (OMI) and Global Ozone Monitoring Experiment (GOME) satellite ozone profiles and total ozone column retrievals. Dobson Umkehr zenith sky data have been collected by NOAA ground-based stations at Boulder, CO (BDR) and Mauna Loa Observatory, HI (MLO) since the 1980s. The UMK04 algorithm is based on the BP ozone cross-section data. It is currently used for all Dobson Umkehr data processing submitted to the World Ozone and Ultraviolet radiation Data Centre (WOUDC) under the Global Atmosphere Watch (GAW) program of the World Meteorological Organization (WMO). Ozone profiles are also retrieved from measurements by the Mark IV Brewers operated by the NOAA-EPA Brewer Spectrophotometer UV and Ozone Network (NEUBrew) using a modified UMK04 algorithm (O3BUmkehr v.2.6, Martin Stanek). This paper describes the sensitivity of the Umkehr retrievals with respect to the proposed ozone cross-section changes. It is found that the ozone cross-section choice only minimally (within the retrieval accuracy) affects the Dobson and the Brewer Umkehr retrievals. On the other hand, significantly larger errors were found in the MLO and Boulder Umkehr ozone data (−8 and +5% bias in stratosphere and troposphere respectively) when the out-of-band (OOB) stray light contribution to the Umkehr measurement is not taken into account (correction is currently not included in the UMK04). The vertical distribution of OOB effect in the retrieved profile can be related to the local ozone climatology, instrument degradation, and optical characteristics of the instrument. Nonetheless, recurring OOB errors do not contribute to the long-term ozone trends.


2021 ◽  
Vol 13 (15) ◽  
pp. 3003
Author(s):  
Fabrizio Niro ◽  
Philippe Goryl ◽  
Steffen Dransfeld ◽  
Valentina Boccia ◽  
Ferran Gascon ◽  
...  

Land remote sensing capabilities in the optical domain have dramatically increased in the past decade, owing to the unprecedented growth of space-borne systems providing a wealth of measurements at enhanced spatial, temporal and spectral resolutions. Yet, critical questions remain as how to unlock the potential of such massive amounts of data, which are complementary in principle but inherently diverse in terms of products specifications, algorithm definition and validation approaches. Likewise, there is a recent increase in spatiotemporal coverage of in situ reference data, although inconsistencies in the used measurement practices and in the associated quality information still hinder their integrated use for satellite products validation. In order to address the above-mentioned challenges, the European Space Agency (ESA), in collaboration with other Space Agencies and international partners, is elaborating a strategy for establishing guidelines and common protocols for the calibration and validation (Cal/Val) of optical land imaging sensors. Within this paper, this strategy will be illustrated and put into the context of current validation systems for land remote sensing. A reinforced focus on metrology is the basic principle underlying such a strategy, since metrology provides the terminology, the framework and the best practices, allowing to tie measurements acquired from a variety of sensors to internationally agreed upon standards. From this general concept, a set of requirements are derived on how the measurements should be acquired, analysed and quality reported to users using unified procedures. This includes the need for traceability, a fully characterised uncertainty budget and adherence to community-agreed measurement protocols. These requirements have led to the development of the Fiducial Reference Measurements (FRM) concept, which is promoted by the ESA as the recommended standard within the satellite validation community. The overarching goal is to enhance user confidence in satellite-based data and characterise inter-sensor inconsistencies, starting from at-sensor radiances and paving the way to achieving the interoperability of current and future land-imaging systems.


2015 ◽  
Vol 203 (3) ◽  
pp. 1873-1876 ◽  
Author(s):  
Stefan Maus

AbstractThe orientation of a spacecraft in Low Earth Orbit can be determined accurately from either magnetic field measurements or star camera images. Ideally, the independently computed spacecraft attitudes should agree. However, we find that the German CHAMP and European Space Agency triple-satellite Swarm geomagnetic satellites exhibit consistent misalignments between the stellar and geomagnetic reference frames, which oscillate with the local time of the orbit. Having an amplitude of 20 arcsec, these oscillations are more than an order of magnitude larger than the stability of the optical bench, which cohosts the magnetometers and star cameras. The misalignments could originate either from the magnetometer or star camera measurements. On one hand, as-yet-unknown external magnetic field contributions could appear as a rotation of the geomagnetic reference frame. On the other hand, the observed misalignments agree in amplitude and phase with the effects of stellar aberration, caused by the movement of the star cameras relative to the light rays emitted by the stars. This is surprising because stellar aberration is allegedly already corrected for by the star image processing system. Resolving these mysterious misalignments is key to fulfilling the measurement accuracy requirements and science objectives of the ongoing Swarm mission. If caused by stellar aberration, fully correcting for this effect could significantly improve the attitude accuracy not only of CHAMP and Swarm, but also of several other past and ongoing scientific satellite missions.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 139
Author(s):  
Shengli Chen ◽  
Xiaobing Zheng ◽  
Xin Li ◽  
Wei Wei ◽  
Shenda Du ◽  
...  

To calibrate the low signal response of the ocean color (OC) bands and test the stability of the Fengyun-3D (FY-3D)/Medium Resolution Spectral Imager II (MERSI-II), an absolute radiometric calibration field test of FY-3D/MERSI-II at the Lake Qinghai Radiometric Calibration Site (RCS) was carried out in August 2018. The lake surface and atmospheric parameters were mainly measured by advanced observation instruments, and the MODerate spectral resolution atmospheric TRANsmittance algorithm and computer model (MODTRAN4.0) was used to simulate the multiple scattering radiance value at the altitude of the sensor. The results showed that the relative deviations between bands 9 and 12 are within 5.0%, while the relative deviations of bands 8, and 13 are 17.1%, and 12.0%, respectively. The precision of the calibration method was verified by calibrating the Aqua/Moderate-resolution Imaging Spectroradiometer (MODIS) and National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer (VIIRS), and the deviation of the calibration results was evaluated with the results of the Dunhuang RCS calibration and lunar calibration. The results showed that the relative deviations of NPP/VIIRS were within 7.0%, and the relative deviations of Aqua/MODIS were within 4.1% from 400 nm to 600 nm. The comparisons of three on-orbit calibration methods indicated that band 8 exhibited a large attenuation after launch and the calibration results had good consistency at the other bands except for band 13. The uncertainty value of the whole calibration system was approximately 6.3%, and the uncertainty brought by the field surface measurement reached 5.4%, which might be the main reason for the relatively large deviation of band 13. This study verifies the feasibility of the vicarious calibration method at the Lake Qinghai RCS and provides the basis and reference for the subsequent on-orbit calibration of FY-3D/MERSI-II.


Author(s):  
Claudio Miccoli ◽  
Alessandro Turchi ◽  
Pierre Schrooyen ◽  
Domenic D’Ambrosio ◽  
Thierry Magin

AbstractThis work deals with the analysis of the cork P50, an ablative thermal protection material (TPM) used for the heat shield of the qarman Re-entry CubeSat. Developed for the European Space Agency (ESA) at the von Karman Institute (VKI) for Fluid Dynamics, qarman is a scientific demonstrator for Aerothermodynamic Research. The ability to model and predict the atypical behavior of the new cork-based materials is considered a critical research topic. Therefore, this work is motivated by the need to develop a numerical model able to respond to this demand, in preparation to the post-flight analysis of qarman. This study is focused on the main thermal response phenomena of the cork P50: pyrolysis and swelling. Pyrolysis was analyzed by means of the multi-physics Computational Fluid Dynamics (CFD) code argo, developed at Cenaero. Based on a unified flow-material solver, the Volume Averaged Navier–Stokes (VANS) equations were numerically solved to describe the interaction between a multi-species high enthalpy flow and a reactive porous medium, by means of a high-order Discontinuous Galerkin Method (DGM). Specifically, an accurate method to compute the pyrolysis production rate was implemented. The modeling of swelling was the most ambitious task, requiring the development of a physical model accounting for this phenomenon, for the purpose of a future implementation within argo. A 1D model was proposed, mainly based on an a priori assumption on the swelling velocity and the resolution of a nonlinear advection equation, by means of a Finite Difference Method (FDM). Once developed, the model was successfully tested through a matlab code, showing that the approach is promising and thus opening the way to further developments.


2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


Sign in / Sign up

Export Citation Format

Share Document