scholarly journals The Comparison of Fusion Methods for HSRRSI Considering the Effectiveness of Land Cover (Features) Object Recognition Based on Deep Learning

2019 ◽  
Vol 11 (12) ◽  
pp. 1435 ◽  
Author(s):  
Shiran Song ◽  
Jianhua Liu ◽  
Heng Pu ◽  
Yuan Liu ◽  
Jingyan Luo

The efficient and accurate application of deep learning in the remote sensing field largely depends on the pre-processing technology of remote sensing images. Particularly, image fusion is the essential way to achieve the complementarity of the panchromatic band and multispectral bands in high spatial resolution remote sensing images. In this paper, we not only pay attention to the visual effect of fused images, but also focus on the subsequent application effectiveness of information extraction and feature recognition based on fused images. Based on the WorldView-3 images of Tongzhou District of Beijing, we apply the fusion results to conduct the experiments of object recognition of typical urban features based on deep learning. Furthermore, we perform a quantitative analysis for the existing pixel-based mainstream fusion methods of IHS (Intensity-Hue Saturation), PCS (Principal Component Substitution), GS (Gram Schmidt), ELS (Ehlers), HPF (High-Pass Filtering), and HCS (Hyper spherical Color Space) from the perspectives of spectrum, geometric features, and recognition accuracy. The results show that there are apparent differences in visual effect and quantitative index among different fusion methods, and the PCS fusion method has the most satisfying comprehensive effectiveness in the object recognition of land cover (features) based on deep learning.

2019 ◽  
Vol 11 (9) ◽  
pp. 1044 ◽  
Author(s):  
Wei Cui ◽  
Fei Wang ◽  
Xin He ◽  
Dongyou Zhang ◽  
Xuxiang Xu ◽  
...  

A comprehensive interpretation of remote sensing images involves not only remote sensing object recognition but also the recognition of spatial relations between objects. Especially in the case of different objects with the same spectrum, the spatial relationship can help interpret remote sensing objects more accurately. Compared with traditional remote sensing object recognition methods, deep learning has the advantages of high accuracy and strong generalizability regarding scene classification and semantic segmentation. However, it is difficult to simultaneously recognize remote sensing objects and their spatial relationship from end-to-end only relying on present deep learning networks. To address this problem, we propose a multi-scale remote sensing image interpretation network, called the MSRIN. The architecture of the MSRIN is a parallel deep neural network based on a fully convolutional network (FCN), a U-Net, and a long short-term memory network (LSTM). The MSRIN recognizes remote sensing objects and their spatial relationship through three processes. First, the MSRIN defines a multi-scale remote sensing image caption strategy and simultaneously segments the same image using the FCN and U-Net on different spatial scales so that a two-scale hierarchy is formed. The output of the FCN and U-Net are masked to obtain the location and boundaries of remote sensing objects. Second, using an attention-based LSTM, the remote sensing image captions include the remote sensing objects (nouns) and their spatial relationships described with natural language. Finally, we designed a remote sensing object recognition and correction mechanism to build the relationship between nouns in captions and object mask graphs using an attention weight matrix to transfer the spatial relationship from captions to objects mask graphs. In other words, the MSRIN simultaneously realizes the semantic segmentation of the remote sensing objects and their spatial relationship identification end-to-end. Experimental results demonstrated that the matching rate between samples and the mask graph increased by 67.37 percentage points, and the matching rate between nouns and the mask graph increased by 41.78 percentage points compared to before correction. The proposed MSRIN has achieved remarkable results.


Author(s):  
Guoyin Wang ◽  
Musabe Jean Bosco ◽  
Hategekimana Yves

Deep learning classification is the state-of-the-art of machine learning approach. Earlier work proves that the deep convolutional neural network has successfully and brilliantly in different applications such as images or video data. Recognizing and clarifying the remote sensing aspect of the earth's surface and exploit land cover and land use (LCLU). First, this article summarized the remote sensing emerging application and challenges for deep learning methods. Second, we propose four approaches to learn efficient and effective CNNs to transfer image representation on the ImageNet dataset to recognize LCLU datasets. We use VGG16, Inception-ResNet-V2, Inception-V3, and DenseNet201 models to extract features from the EACC dataset. We use pre-trained CNNs on ImageNet to extract features. For feature selection we proposed principal component analysis (PCA) to improve accuracy and speed up the model. We train our model by multi-layer perceptron (MLP) as a classifier. Lastly, we apply the multi-granularity encoding ensemble model. We achieve an overall accuracy of 92.3% for the nine-class classification problem. This work will help remote sensing scientists understand deep learning tools and apply them in large-scale remote sensing challenges


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


2021 ◽  
Vol 13 (4) ◽  
pp. 699
Author(s):  
Tingting Zhou ◽  
Haoyang Fu ◽  
Chenglin Sun ◽  
Shenghan Wang

Due to the block of high-rise objects and the influence of the sun’s altitude and azimuth, shadows are inevitably formed in remote sensing images particularly in urban areas, which causes missing information in the shadow region. In this paper, we propose a new method for shadow detection and compensation through objected-based strategy. For shadow detection, the shadow was highlighted by an improved shadow index (ISI) combined color space with an NIR band, then ISI was reconstructed by the objects acquired from the mean-shift algorithm to weaken noise interference and improve integrity. Finally, threshold segmentation was applied to obtain the shadow mask. For shadow compensation, the objects from segmentation were treated as a minimum processing unit. The adjacent objects are likely to have the same ambient light intensity, based on which we put forward a shadow compensation method which always compensates shadow objects with their adjacent non-shadow objects. Furthermore, we presented a dynamic penumbra compensation method (DPCM) to define the penumbra scope and accurately remove the penumbra. Finally, the proposed methods were compared with the stated-of-art shadow indexes, shadow compensation method and penumbra compensation methods. The experiments show that the proposed method can accurately detect shadow from urban high-resolution remote sensing images with a complex background and can effectively compensate the information in the shadow region.


2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Luc Baudoux ◽  
Jordi Inglada ◽  
Clément Mallet

CORINE Land-Cover (CLC) and its by-products are considered as a reference baseline for land-cover mapping over Europe and subsequent applications. CLC is currently tediously produced each six years from both the visual interpretation and the automatic analysis of a large amount of remote sensing images. Observing that various European countries regularly produce in parallel their own land-cover country-scaled maps with their own specifications, we propose to directly infer CORINE Land-Cover from an existing map, therefore steadily decreasing the updating time-frame. No additional remote sensing image is required. In this paper, we focus more specifically on translating a country-scale remote sensed map, OSO (France), into CORINE Land Cover, in a supervised way. OSO and CLC not only differ in nomenclature but also in spatial resolution. We jointly harmonize both dimensions using a contextual and asymmetrical Convolution Neural Network with positional encoding. We show for various use cases that our method achieves a superior performance than the traditional semantic-based translation approach, achieving an 81% accuracy over all of France, close to the targeted 85% accuracy of CLC.


2021 ◽  
Vol 13 (13) ◽  
pp. 2524
Author(s):  
Ziyi Chen ◽  
Dilong Li ◽  
Wentao Fan ◽  
Haiyan Guan ◽  
Cheng Wang ◽  
...  

Deep learning models have brought great breakthroughs in building extraction from high-resolution optical remote-sensing images. Among recent research, the self-attention module has called up a storm in many fields, including building extraction. However, most current deep learning models loading with the self-attention module still lose sight of the reconstruction bias’s effectiveness. Through tipping the balance between the abilities of encoding and decoding, i.e., making the decoding network be much more complex than the encoding network, the semantic segmentation ability will be reinforced. To remedy the research weakness in combing self-attention and reconstruction-bias modules for building extraction, this paper presents a U-Net architecture that combines self-attention and reconstruction-bias modules. In the encoding part, a self-attention module is added to learn the attention weights of the inputs. Through the self-attention module, the network will pay more attention to positions where there may be salient regions. In the decoding part, multiple large convolutional up-sampling operations are used for increasing the reconstruction ability. We test our model on two open available datasets: the WHU and Massachusetts Building datasets. We achieve IoU scores of 89.39% and 73.49% for the WHU and Massachusetts Building datasets, respectively. Compared with several recently famous semantic segmentation methods and representative building extraction methods, our method’s results are satisfactory.


2021 ◽  
Vol 10 (3) ◽  
pp. 125
Author(s):  
Junqing Huang ◽  
Liguo Weng ◽  
Bingyu Chen ◽  
Min Xia

Analyzing land cover using remote sensing images has broad prospects, the precise segmentation of land cover is the key to the application of this technology. Nowadays, the Convolution Neural Network (CNN) is widely used in many image semantic segmentation tasks. However, existing CNN models often exhibit poor generalization ability and low segmentation accuracy when dealing with land cover segmentation tasks. To solve this problem, this paper proposes Dual Function Feature Aggregation Network (DFFAN). This method combines image context information, gathers image spatial information, and extracts and fuses features. DFFAN uses residual neural networks as backbone to obtain different dimensional feature information of remote sensing images through multiple downsamplings. This work designs Affinity Matrix Module (AMM) to obtain the context of each feature map and proposes Boundary Feature Fusion Module (BFF) to fuse the context information and spatial information of an image to determine the location distribution of each image’s category. Compared with existing methods, the proposed method is significantly improved in accuracy. Its mean intersection over union (MIoU) on the LandCover dataset reaches 84.81%.


Sign in / Sign up

Export Citation Format

Share Document