scholarly journals Satellite Earth Observation Data in Epidemiological Modeling of Malaria, Dengue and West Nile Virus: A Scoping Review

2019 ◽  
Vol 11 (16) ◽  
pp. 1862 ◽  
Author(s):  
Elisavet Parselia ◽  
Charalampos Kontoes ◽  
Alexia Tsouni ◽  
Christos Hadjichristodoulou ◽  
Ioannis Kioutsioukis ◽  
...  

Earth Observation (EO) data can be leveraged to estimate environmental variables that influence the transmission cycle of the pathogens that lead to mosquito-borne diseases (MBDs). The aim of this scoping review is to examine the state-of-the-art and identify knowledge gaps on the latest methods that used satellite EO data in their epidemiological models focusing on malaria, dengue and West Nile Virus (WNV). In total, 43 scientific papers met the inclusion criteria and were considered in this review. Researchers have examined a wide variety of methodologies ranging from statistical to machine learning algorithms. A number of studies used models and EO data that seemed promising and claimed to be easily replicated in different geographic contexts, enabling the realization of systems on regional and national scales. The need has emerged to leverage furthermore new powerful modeling approaches, like artificial intelligence and ensemble modeling and explore new and enhanced EO sensors towards the analysis of big satellite data, in order to develop accurate epidemiological models and contribute to the reduction of the burden of MBDs.

2020 ◽  
Author(s):  
Elisavet Parselia ◽  
Charalambos Kontoes ◽  
Ioannis Kioutsioukis ◽  
Spiros Mourelatos ◽  
Christos Hadjichristodoulou ◽  
...  

<p>The aim of this study is the development of an operational Early Warning System (EWS) that will utilize new and enhanced satellite Earth Observation (EO) sensors with the purpose of forecasting and risk mapping the West Nile Virus (WNV) outbreaks. Satellite EO data were leveraged to estimate environmental variables that influence the transmission cycle of the pathogen that leads to WNV, a mosquito-borne disease (MBD). The system was trained with epidemiological and entomological data from the region of Central Macedonia, the most epidemic-prone region in Greece regarding the WNV. The satellite derived environmental parameters of the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), the Land Surface Temperature (LST), precipitation data as well as proximity to water bodies were coupled with meteorological data and were used as explanatory variables for the models. The management and analysis of the big satellite data was conducted with the Open Data Cube (ODC), providing an open and freely accessible exploitation architecture. Statistical and machine learning algorithms were used for short-term forecast, while dynamical models were utilized for the seasonal forecast.The system explores the analysis of big satellite data and proves its scalability by replicating the same models in different geographic regions; e.g the northeastern Italian region of Veneto. This EWS will be used as a tool for helping local decision-makers to improve health system responses, take preventive measures in order to curtail the spread of WNV in Europe and address the relevant priorities of the Sustainable Development Goals (SDGs) such as good health and well-being (SDG 3) and climate action (SDG 13).</p>


2020 ◽  
Vol 12 (18) ◽  
pp. 3064
Author(s):  
Luca Candeloro ◽  
Carla Ippoliti ◽  
Federica Iapaolo ◽  
Federica Monaco ◽  
Daniela Morelli ◽  
...  

West Nile Disease (WND) is one of the most spread zoonosis in Italy and Europe caused by a vector-borne virus. Its transmission cycle is well understood, with birds acting as the primary hosts and mosquito vectors transmitting the virus to other birds, while humans and horses are occasional dead-end hosts. Identifying suitable environmental conditions across large areas containing multiple species of potential hosts and vectors can be difficult. The recent and massive availability of Earth Observation data and the continuous development of innovative Machine Learning methods can contribute to automatically identify patterns in big datasets and to make highly accurate identification of areas at risk. In this paper, we investigated the West Nile Virus (WNV) circulation in relation to Land Surface Temperature, Normalized Difference Vegetation Index and Surface Soil Moisture collected during the 160 days before the infection took place, with the aim of evaluating the predictive capacity of lagged remotely sensed variables in the identification of areas at risk for WNV circulation. WNV detection in mosquitoes, birds and horses in 2017, 2018 and 2019, has been collected from the National Information System for Animal Disease Notification. An Extreme Gradient Boosting model was trained with data from 2017 and 2018 and tested for the 2019 epidemic, predicting the spatio-temporal WNV circulation two weeks in advance with an overall accuracy of 0.84. This work lays the basis for a future early warning system that could alert public authorities when climatic and environmental conditions become favourable to the onset and spread of WNV.


GIS Business ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 12-14
Author(s):  
Eicher, A

Our goal is to establish the earth observation data in the business world Unser Ziel ist es, die Erdbeobachtungsdaten in der Geschäftswelt zu etablieren


Author(s):  
Tais Grippa ◽  
Stefanos Georganos ◽  
Sabine Vanhuysse ◽  
Moritz Lennert ◽  
Nicholus Mboga ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
William Straka ◽  
Shobha Kondragunta ◽  
Zigang Wei ◽  
Hai Zhang ◽  
Steven D. Miller ◽  
...  

The COVID-19 pandemic has infected almost 73 million people and is responsible for over 1.63 million fatalities worldwide since early December 2019, when it was first reported in Wuhan, China. In the early stages of the pandemic, social distancing measures, such as lockdown restrictions, were applied in a non-uniform way across the world to reduce the spread of the virus. While such restrictions contributed to flattening the curve in places like Italy, Germany, and South Korea, it plunged the economy in the United States to a level of recession not seen since WWII, while also improving air quality due to the reduced mobility. Using daily Earth observation data (Day/Night Band (DNB) from the National Oceanic and Atmospheric Administration Suomi-NPP and NO2 measurements from the TROPOspheric Monitoring Instrument TROPOMI) along with monthly averaged cell phone derived mobility data, we examined the economic and environmental impacts of lockdowns in Los Angeles, California; Chicago, Illinois; Washington DC from February to April 2020—encompassing the most profound shutdown measures taken in the U.S. The preliminary analysis revealed that the reduction in mobility involved two major observable impacts: (i) improved air quality (a reduction in NO2 and PM2.5 concentration), but (ii) reduced economic activity (a decrease in energy consumption as measured by the radiance from the DNB data) that impacted on gross domestic product, poverty levels, and the unemployment rate. With the continuing rise of COVID-19 cases and declining economic conditions, such knowledge can be combined with unemployment and demographic data to develop policies and strategies for the safe reopening of the economy while preserving our environment and protecting vulnerable populations susceptible to COVID-19 infection.


2021 ◽  
Vol 13 (7) ◽  
pp. 1310
Author(s):  
Gabriele Bitelli ◽  
Emanuele Mandanici

The exponential growth in the volume of Earth observation data and the increasing quality and availability of high-resolution imagery are increasingly making more applications possible in urban environments [...]


2020 ◽  
Vol 3 (1) ◽  
pp. 78
Author(s):  
Francis Oloo ◽  
Godwin Murithi ◽  
Charlynne Jepkosgei

Urban forests contribute significantly to the ecological integrity of urban areas and the quality of life of urban dwellers through air quality control, energy conservation, improving urban hydrology, and regulation of land surface temperatures (LST). However, urban forests are under threat due to human activities, natural calamities, and bioinvasion continually decimating forest cover. Few studies have used fine-scaled Earth observation data to understand the dynamics of tree cover loss in urban forests and the sustainability of such forests in the face of increasing urban population. The aim of this work was to quantify the spatial and temporal changes in urban forest characteristics and to assess the potential drivers of such changes. We used data on tree cover, normalized difference vegetation index (NDVI), and land cover change to quantify tree cover loss and changes in vegetation health in urban forests within the Nairobi metropolitan area in Kenya. We also used land cover data to visualize the potential link between tree cover loss and changes in land use characteristics. From approximately 6600 hectares (ha) of forest land, 720 ha have been lost between 2000 and 2019, representing about 11% loss in 20 years. In six of the urban forests, the trend of loss was positive, indicating a continuing disturbance of urban forests around Nairobi. Conversely, there was a negative trend in the annual mean NDVI values for each of the forests, indicating a potential deterioration of the vegetation health in the forests. A preliminary, visual inspection of high-resolution imagery in sample areas of tree cover loss showed that the main drivers of loss are the conversion of forest lands to residential areas and farmlands, implementation of big infrastructure projects that pass through the forests, and extraction of timber and other resources to support urban developments. The outcome of this study reveals the value of Earth observation data in monitoring urban forest resources.


Author(s):  
Nataliia N. Kussul ◽  
Andrii Yu. Shelestov ◽  
Sergii V. Skakun ◽  
Guoqing Li ◽  
Olga M. Kussul

2018 ◽  
Vol 28 (8-9) ◽  
pp. 2197-2219 ◽  
Author(s):  
C. Sudhakar Reddy ◽  
V. S. Faseela ◽  
Anjaly Unnikrishnan ◽  
C. S. Jha

Sign in / Sign up

Export Citation Format

Share Document