scholarly journals Debris Flow Susceptibility Mapping Using Machine-Learning Techniques in Shigatse Area, China

2019 ◽  
Vol 11 (23) ◽  
pp. 2801 ◽  
Author(s):  
Yonghong Zhang ◽  
Taotao Ge ◽  
Wei Tian ◽  
Yuei-An Liou

Debris flows have been always a serious problem in the mountain areas. Research on the assessment of debris flows susceptibility (DFS) is useful for preventing and mitigating debris flow risks. The main purpose of this work is to study the DFS in the Shigatse area of Tibet, by using machine learning methods, after assessing the main triggering factors of debris flows. Remote sensing and geographic information system (GIS) are used to obtain datasets of topography, vegetation, human activities and soil factors for local debris flows. The problem of debris flow susceptibility level imbalances in datasets is addressed by the Borderline-SMOTE method. Five machine learning methods, i.e., back propagation neural network (BPNN), one-dimensional convolutional neural network (1D-CNN), decision tree (DT), random forest (RF), and extreme gradient boosting (XGBoost) have been used to analyze and fit the relationship between debris flow triggering factors and occurrence, and to evaluate the weight of each triggering factor. The ANOVA and Tukey HSD tests have revealed that the XGBoost model exhibited the best mean accuracy (0.924) on ten-fold cross-validation and the performance was significantly better than that of the BPNN (0.871), DT (0.816), and RF (0.901). However, the performance of the XGBoost did not significantly differ from that of the 1D-CNN (0.914). This is also the first comparison experiment between XGBoost and 1D-CNN methods in the DFS study. The DFS maps have been verified by five evaluation methods: Precision, Recall, F1 score, Accuracy and area under the curve (AUC). Experiments show that the XGBoost has the best score, and the factors that have a greater impact on debris flows are aspect, annual average rainfall, profile curvature, and elevation.

2020 ◽  
Vol 12 (2) ◽  
pp. 295 ◽  
Author(s):  
Ke Xiong ◽  
Basanta Raj Adhikari ◽  
Constantine A. Stamatopoulos ◽  
Yu Zhan ◽  
Shaolin Wu ◽  
...  

Debris flow susceptibility mapping is considered to be useful for hazard prevention and mitigation. As a frequent debris flow area, many hazardous events have occurred annually and caused a lot of damage in the Sichuan Province, China. Therefore, this study attempted to evaluate and compare the performance of four state-of-the-art machine-learning methods, namely Logistic Regression (LR), Support Vector Machines (SVM), Random Forest (RF), and Boosted Regression Trees (BRT), for debris flow susceptibility mapping in this region. Four models were constructed based on the debris flow inventory and a range of causal factors. A variety of datasets was obtained through the combined application of remote sensing (RS) and geographic information system (GIS). The mean altitude, altitude difference, aridity index, and groove gradient played the most important role in the assessment. The performance of these modes was evaluated using predictive accuracy (ACC) and the area under the receiver operating characteristic curve (AUC). The results of this study showed that all four models were capable of producing accurate and robust debris flow susceptibility maps (ACC and AUC values were well above 0.75 and 0.80 separately). With an excellent spatial prediction capability and strong robustness, the BRT model (ACC = 0.781, AUC = 0.852) outperformed other models and was the ideal choice. Our results also exhibited the importance of selecting suitable mapping units and optimal predictors. Furthermore, the debris flow susceptibility maps of the Sichuan Province were produced, which can provide helpful data for assessing and mitigating debris flow hazards.


2020 ◽  
Author(s):  
Juan David Gutiérrez

Abstract Background: Previous authors have evidenced the relationship between air pollution-aerosols and meteorological variables with the occurrence of pneumonia. Forecasting the number of attentions of pneumonia cases may be useful to optimize the allocation of healthcare resources and support public health authorities to implement emergency plans to face an increase in patients. The purpose of this study is to implement four machine-learning methods to forecast the number of attentions of pneumonia cases in the five largest cities of Colombia by using air pollution-aerosols, and meteorological and admission data.Methods: The number of attentions of pneumonia cases in the five most populated Colombian cities was provided by public health authorities between January 2009 and December 2019. Air pollution-aerosols and meteorological data were obtained from remote sensors. Four machine-learning methods were implemented for each city. We selected the machine-learning methods with the best performance in each city and implemented two techniques to identify the most relevant variables in the forecasting developed by the best-performing machine-learning models. Results: According to R2 metric, random forest was the machine-learning method with the best performance for Bogotá, Medellín and Cali; whereas for Barranquilla, the best performance was obtained from the Bayesian adaptive regression trees, and for Cartagena, extreme gradient boosting had the best performance. The most important variables for the forecasting were related to the admission data.Conclusions: The results obtained from this study suggest that machine learning can be used to efficiently forecast the number of attentions of pneumonia cases, and therefore, it can be a useful decision-making tool for public health authorities.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 21
Author(s):  
Yury Rodimkov ◽  
Evgeny Efimenko ◽  
Valentin Volokitin ◽  
Elena Panova ◽  
Alexey Polovinkin ◽  
...  

When entering the phase of big data processing and statistical inferences in experimental physics, the efficient use of machine learning methods may require optimal data preprocessing methods and, in particular, optimal balance between details and noise. In experimental studies of strong-field quantum electrodynamics with intense lasers, this balance concerns data binning for the observed distributions of particles and photons. Here we analyze the aspect of binning with respect to different machine learning methods (Support Vector Machine (SVM), Gradient Boosting Trees (GBT), Fully-Connected Neural Network (FCNN), Convolutional Neural Network (CNN)) using numerical simulations that mimic expected properties of upcoming experiments. We see that binning can crucially affect the performance of SVM and GBT, and, to a less extent, FCNN and CNN. This can be interpreted as the latter methods being able to effectively learn the optimal binning, discarding unnecessary information. Nevertheless, given limited training sets, the results indicate that the efficiency can be increased by optimizing the binning scale along with other hyperparameters. We present specific measurements of accuracy that can be useful for planning of experiments in the specified research area.


Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 41 ◽  
Author(s):  
Mengli Xiao ◽  
Zhong Zhuang ◽  
Wei Pan

Enhancer-promoter interactions (EPIs) are crucial for transcriptional regulation. Mapping such interactions proves useful for understanding disease regulations and discovering risk genes in genome-wide association studies. Some previous studies showed that machine learning methods, as computational alternatives to costly experimental approaches, performed well in predicting EPIs from local sequence and/or local epigenomic data. In particular, deep learning methods were demonstrated to outperform traditional machine learning methods, and using DNA sequence data alone could perform either better than or almost as well as only utilizing epigenomic data. However, most, if not all, of these previous studies were based on randomly splitting enhancer-promoter pairs as training, tuning, and test data, which has recently been pointed out to be problematic; due to multiple and duplicating/overlapping enhancers (and promoters) in enhancer-promoter pairs in EPI data, such random splitting does not lead to independent training, tuning, and test data, thus resulting in model over-fitting and over-estimating predictive performance. Here, after correcting this design issue, we extensively studied the performance of various deep learning models with local sequence and epigenomic data around enhancer-promoter pairs. Our results confirmed much lower performance using either sequence or epigenomic data alone, or both, than reported previously. We also demonstrated that local epigenomic features were more informative than local sequence data. Our results were based on an extensive exploration of many convolutional neural network (CNN) and feed-forward neural network (FNN) structures, and of gradient boosting as a representative of traditional machine learning.


2021 ◽  
Vol 12 ◽  
Author(s):  
Runbin Sun ◽  
Haokai Zhao ◽  
Shuzhen Huang ◽  
Ran Zhang ◽  
Zhenyao Lu ◽  
...  

Liver has an ability to regenerate itself in mammals, whereas the mechanism has not been fully explained. Here we used a GC/MS-based metabolomic method to profile the dynamic endogenous metabolic change in the serum of C57BL/6J mice at different times after 2/3 partial hepatectomy (PHx), and nine machine learning methods including Least Absolute Shrinkage and Selection Operator Regression (LASSO), Partial Least Squares Regression (PLS), Principal Components Regression (PCR), k-Nearest Neighbors (KNN), Support Vector Machines (SVM), Random Forest (RF), eXtreme Gradient Boosting (xgbDART), Neural Network (NNET) and Bayesian Regularized Neural Network (BRNN) were used for regression between the liver index and metabolomic data at different stages of liver regeneration. We found a tree-based random forest method that had the minimum average Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and the maximum R square (R2) and is time-saving. Furthermore, variable of importance in the project (VIP) analysis of RF method was performed and metabolites with VIP ranked top 20 were selected as the most critical metabolites contributing to the model. Ornithine, phenylalanine, 2-hydroxybutyric acid, lysine, etc. were chosen as the most important metabolites which had strong correlations with the liver index. Further pathway analysis found Arginine biosynthesis, Pantothenate and CoA biosynthesis, Galactose metabolism, Valine, leucine and isoleucine degradation were the most influenced pathways. In summary, several amino acid metabolic pathways and glucose metabolism pathway were dynamically changed during liver regeneration. The RF method showed advantages for predicting the liver index after PHx over other machine learning methods used and a metabolic clock containing four metabolites is established to predict the liver index during liver regeneration.


2020 ◽  
Vol 12 (18) ◽  
pp. 2933
Author(s):  
Feng Qing ◽  
Yan Zhao ◽  
Xingmin Meng ◽  
Xiaojun Su ◽  
Tianjun Qi ◽  
...  

The China–Pakistan Karakoram Highway is an important land route from China to South Asia and the Middle East via Pakistan. Due to the extremely hazardous geological environment around the highway, landslides, debris flows, collapses, and subsidence are frequent. Among them, debris flows are one of the most serious geological hazards on the Karakoram Highway, and they often cause interruptions to traffic and casualties. Therefore, the development of debris flow susceptibility mapping along the highway can potentially facilitate its safe operation. In this study, we used remote sensing, GIS, and machine learning techniques to map debris flow susceptibility along the Karakoram Highway in areas where observation data are scarce and difficult to obtain by field survey. First, the distribution of 544 catchments which are prone to debris flow were identified through visual interpretation of remote sensing images. The factors influencing debris flow susceptibility were then analyzed, and a total of 17 parameters related to geomorphology, soil materials, and triggering conditions were selected. Model training was based on multiple common machine learning methods, including Ensemble Methods, Gaussian Processes, Generalized Linear models, Navies Bayes, Nearest Neighbors, Support Vector Machines, Trees, Discriminant Analysis, and eXtreme Gradient Boosting. Support Vector Classification (SVC) was chosen as the final model after evaluation; its accuracy (ACC) was 0.91, and the area under the ROC curve (AUC) was 0.96. Among the factors involved in SVC, the Melton Ratio (MR) was the most important, followed by drainage density (DD), Hypsometric Integral (HI), and average slope (AS), indicating that geomorphic conditions play an important role in predicting debris flow susceptibility in the study area. SVC was used to map debris flow susceptibility in the study area, and the results will potentially facilitate the safe operation of the highway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cindy Feng ◽  
George Kephart ◽  
Elizabeth Juarez-Colunga

Abstract Background Coronavirus disease (COVID-19) presents an unprecedented threat to global health worldwide. Accurately predicting the mortality risk among the infected individuals is crucial for prioritizing medical care and mitigating the healthcare system’s burden. The present study aimed to assess the predictive accuracy of machine learning methods to predict the COVID-19 mortality risk. Methods We compared the performance of classification tree, random forest (RF), extreme gradient boosting (XGBoost), logistic regression, generalized additive model (GAM) and linear discriminant analysis (LDA) to predict the mortality risk among 49,216 COVID-19 positive cases in Toronto, Canada, reported from March 1 to December 10, 2020. We used repeated split-sample validation and k-steps-ahead forecasting validation. Predictive models were estimated using training samples, and predictive accuracy of the methods for the testing samples was assessed using the area under the receiver operating characteristic curve, Brier’s score, calibration intercept and calibration slope. Results We found XGBoost is highly discriminative, with an AUC of 0.9669 and has superior performance over conventional tree-based methods, i.e., classification tree or RF methods for predicting COVID-19 mortality risk. Regression-based methods (logistic, GAM and LASSO) had comparable performance to the XGBoost with slightly lower AUCs and higher Brier’s scores. Conclusions XGBoost offers superior performance over conventional tree-based methods and minor improvement over regression-based methods for predicting COVID-19 mortality risk in the study population.


Author(s):  
A. Myngzhassar ◽  
◽  
A. B. Kuldzhabekov ◽  
S. Daribayev ◽  
А. N. Temirbekov ◽  
...  

The article is based on the problems of machine learning in the field of computer linguistics, in particular, the identification of psychological types of people on the basis of text messages on social networks. The purpose of this article is to study the methods of machine learning Naive bayes and Extreme Gradient Boosting (XGBoost) to create a classifier for the Kazakh language, which determines the type of Myers-Briggs Type Index (MBTI) based on text samples of people’s posts on social networks. The course of research experiments in the use of machine learning methods and the results of the study are presented and the results obtained are compared.


2021 ◽  
Author(s):  
Benedikt Schulz ◽  
Sebastian Lerch

<p>We conduct a systematic and comprehensive comparison of state-of-the-art postprocessing methods for ensemble forecasts of wind gusts. The compared approaches range from well-established techniques to novel neural network-based methods. Our study is based on a 6-year dataset of forecasts from the convection‐permitting COSMO‐DE ensemble prediction system, with hourly lead times up to 21 hours and forecasts of 57 meteorological variables, and corresponding observations from 175<strong> </strong>weather stations over Germany. We find that simpler methods such as ensemble model output statistics (EMOS), member-by-member postprocessing and a novel isotonic distributional regression approach, which utilize ensemble forecasts of wind gusts as sole inputs, already result in improvement in terms of the mean CRPS of up to 40% compared to the raw ensemble predictions. This can be substantially improved upon by more complex machine learning methods such as gradient boosting-based extensions of EMOS, quantile regression forests, and variants of neural network-based approaches that are capable of incorporating additional information from the large variety of available predictor variables.</p>


Sign in / Sign up

Export Citation Format

Share Document