scholarly journals Integrating Landsat-8 and Sentinel-2 Time Series Data for Yield Prediction of Sugarcane Crops at the Block Level

2020 ◽  
Vol 12 (8) ◽  
pp. 1313 ◽  
Author(s):  
Muhammad Moshiur Rahman ◽  
Andrew Robson

Early prediction of sugarcane crop yield at the commercial block level (unit area of a single crop of the same variety, ratoon or planting date) offers significant benefit to growers, consultants, millers, policy makers, crop insurance companies and researchers. This current study explored a remote sensing based approach for predicting sugarcane yield at the block level by further developing a regionally specific Landsat time series model and including individual crop sowing (or previous seasons’ harvest) date. For the Bundaberg growing region of Australia this extends over a five months period, from July to November. For this analysis, the sugarcane blocks were clustered into 10 groups based on their specific planting or ratoon commencement date within the specified five months period. These clustered or groups of blocks were named ‘bins’. Cloud free (<20%) satellite data from the polar-orbiting Landsat-8 (launched 2013), Sentinel-2A (launched 2015) and Sentinel-2B (launched 2017) sensors were acquired over the cane growing region in Bundaberg (area of 32,983 ha), from the growing season starting in July 2014, with the average green normalised difference vegetation index (GNDVI) derived for each block. The number of images acquired for each season was defined by the number of cloud free acquisitions. Using the Simple Linear Machine Learning (ML) algorithm, the extracted Landsat derived GNDVI values for each of the blocks were converted to Sentinel GNDVI. The average GNDVI of each ‘bin’ was plotted and a quadratic model was fitted through the time series to identify the peak growth stage defined as the maximum GNDVI value. The model derived maximum GNDVI values for each of the bins were then regressed against the average actual yield (t·ha-1) achieved for the respective bin over the five growing years, producing strong correlations (R2 = 0.92 to 0.99). The quadratic curves developed for the different bins were shifted according to the specific planting or ratoon date of an individual block allowing for the peak GNDVI value of the block to be calculated, regressed against the actual block yield (t·ha-1) and the prediction of yield to be made. To validate the accuracies of the 10 time series algorithms representing each of the 10 bins, 592 individual blocks were selected from the Bundaberg region during the 2019 harvest season. The crops were clustered into the appropriate bins with the respective algorithm applied. From a Sentinel image acquired on the 5 May 2019, the prediction accuracies were encouraging (R2 = 0.87 and RMSE = 11.33 (t·ha-1)) when compared to actual harvested yield, as reported by the mill. The results presented in this paper demonstrate significant progress in the accurate prediction of sugarcane yield at the individual sugarcane block level using a remote sensing, time-series based approach.

Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 139 ◽  
Author(s):  
Yingying Yang ◽  
Taixia Wu ◽  
Shudong Wang ◽  
Jing Li ◽  
Farhan Muhanmmad

Evergreen trees play a significant role in urban ecological services, such as air purification, carbon and oxygen balance, and temperature and moisture regulation. Remote sensing represents an essential technology for obtaining spatiotemporal distribution data for evergreen trees in cities. However, highly developed subtropical cities, such as Nanjing, China, have serious land fragmentation problems, which greatly increase the difficulty of extracting evergreen trees information and reduce the extraction precision of remote-sensing methods. This paper introduces a normalized difference vegetation index coefficient of variation (NDVI-CV) method to extract evergreen trees from remote-sensing data by combining the annual minimum normalized difference vegetation index (NDVIann-min) with the CV of a Landsat 8 time-series NDVI. To obtain an intra-annual, high-resolution time-series dataset, Landsat 8 cloud-free and partially cloud-free images over a three-year period were collected and reconstructed for the study area. Considering that the characteristic growth of evergreen trees remained nearly unchanged during the phenology cycle, NDVIann-min is the optimal phenological node to separate this information from that of other vegetation types. Furthermore, the CV of time-series NDVI considers all of the phenologically critical phases; therefore, the NDVI-CV method had higher extraction accuracy. As such, the approach presented herein represents a more practical and promising method based on reasonable NDVIann-min and CV thresholds to obtain spatial distribution data for evergreen trees. The experimental verification results indicated a comparable performance since the extraction accuracy of the model was over 85%, which met the classification accuracy requirements. In a cross-validation comparison with other evergreen trees’ extraction methods, the NDVI-CV method showed higher sensitivity and stability.


2018 ◽  
Vol 7 (11) ◽  
pp. 418 ◽  
Author(s):  
Tian Jiang ◽  
Xiangnan Liu ◽  
Ling Wu

Accurate and timely information about rice planting areas is essential for crop yield estimation, global climate change and agricultural resource management. In this study, we present a novel pixel-level classification approach that uses convolutional neural network (CNN) model to extract the features of enhanced vegetation index (EVI) time series curve for classification. The goal is to explore the practicability of deep learning techniques for rice recognition in complex landscape regions, where rice is easily confused with the surroundings, by using mid-resolution remote sensing images. A transfer learning strategy is utilized to fine tune a pre-trained CNN model and obtain the temporal features of the EVI curve. Support vector machine (SVM), a traditional machine learning approach, is also implemented in the experiment. Finally, we evaluate the accuracy of the two models. Results show that our model performs better than SVM, with the overall accuracies being 93.60% and 91.05%, respectively. Therefore, this technique is appropriate for estimating rice planting areas in southern China on the basis of a pre-trained CNN model by using time series data. And more opportunity and potential can be found for crop classification by remote sensing and deep learning technique in the future study.


2020 ◽  
Vol 12 (18) ◽  
pp. 3038
Author(s):  
Dhahi Al-Shammari ◽  
Ignacio Fuentes ◽  
Brett M. Whelan ◽  
Patrick Filippi ◽  
Thomas F. A. Bishop

A phenology-based crop type mapping approach was carried out to map cotton fields throughout the cotton-growing areas of eastern Australia. The workflow was implemented in the Google Earth Engine (GEE) platform, as it is time efficient and does not require processing in multiple platforms to complete the classification steps. A time series of Normalised Difference Vegetation Index (NDVI) imagery were generated from Landsat 8 Surface Reflectance Tier 1 (L8SR) and processed using Fourier transformation. This was used to produce the harmonised-NDVI (H-NDVI) from the original NDVI, and then phase and amplitude values were generated from the H-NDVI to visualise active cotton in the targeted fields. Random Forest (RF) models were built to classify cotton at early, mid and late growth stages to assess the ability of the model to classify cotton as the season progresses, with phase, amplitude and other individual bands as predictors. Results obtained from leave-one-season-out cross validation (LOSOCV) indicated that Overall Accuracy (OA), Kappa, Producer’s Accuracies (PA) and User’s Accuracy (UA), increased significantly when adding amplitude and phase as predictor variables to the model, than prediction using H-NDVI or raw bands only. Commission and omission errors were reduced significantly as the season progressed and more in-season imagery was available. The methodology proposed in this study can map cotton crops accurately based on the reconstruction of the unique cotton reflectance trajectory through time. This study confirms the importance of phenological metrics in improving in-season cotton fields mapping across eastern Australia. This model can be used in conjunction with other datasets to forecast yield based on the mapped crop type for improved decision making related to supply chain logistics and seasonal outlooks for production.


2020 ◽  
Vol 12 (4) ◽  
pp. 1313
Author(s):  
Leah M. Mungai ◽  
Joseph P. Messina ◽  
Sieglinde Snapp

This study aims to assess spatial patterns of Malawian agricultural productivity trends to elucidate the influence of weather and edaphic properties on Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Difference Vegetation Index (NDVI) seasonal time series data over a decade (2006–2017). Spatially-located positive trends in the time series that can’t otherwise be accounted for are considered as evidence of farmer management and agricultural intensification. A second set of data provides further insights, using spatial distribution of farmer reported maize yield, inorganic and organic inputs use, and farmer reported soil quality information from the Malawi Integrated Household Survey (IHS3) and (IHS4), implemented between 2010–2011 and 2016–2017, respectively. Overall, remote-sensing identified areas of intensifying agriculture as not fully explained by biophysical drivers. Further, productivity trends for maize crop across Malawi show a decreasing trend over a decade (2006–2017). This is consistent with survey data, as national farmer reported yields showed low yields across Malawi, where 61% (2010–11) and 69% (2016–17) reported yields as being less than 1000 Kilograms/Hectare. Yields were markedly low in the southern region of Malawi, similar to remote sensing observations. Our generalized models provide contextual information for stakeholders on sustainability of productivity and can assist in targeting resources in needed areas. More in-depth research would improve detection of drivers of agricultural variability.


Author(s):  
M. Khosravirad ◽  
M. Omid ◽  
F. Sarmadian ◽  
S. Hosseinpour

Abstract. This study aimed to evaluate the power of various vegetation indices for sugarcane yield modelling in Shoeibeyeh area in Khuzestan province of Iran. Seven indices were extracted from satellite images and were then converted to seven days' time-series via interpolation. To eliminate noise from the time-series data, all of them were reconstructed using the Savitzky-Golay algorithm. Thus seven different time-series of vegetation indices were obtained. The growth profile was drawn via averaging of NDVI time-series data and was divided into three growth intervals. Then the accumulative values of vegetation indices related to first and second periods of growth (from 2004 to 2016 extracted from time-series data) were evaluated by simple linear regression models against the average observed yields efficiency. The result showed the accumulative IAVI (γ = 1.4) vegetation index relative to first period of growth with R2 = 0.66 and RMSE = 3.78 ton/ha and the accumulative NDI vegetation index relative to second period of growth with R2 = 0.66 and RMSE = 3.79 ton/ha and the accumulative NDI vegetation index relative to sum of the first and the second growth periods with R2 = 0.78 and RMSE = 3.09 ton/ha had good agreement with sugarcane stem yield efficiency at the middle of growth and before harvesting season.


2021 ◽  
Vol 13 (13) ◽  
pp. 2549
Author(s):  
Zhonghui Wei ◽  
Xiaohe Gu ◽  
Qian Sun ◽  
Xueqian Hu ◽  
Yunbing Gao

With the rapid increase in the costs of rural labour and the adjustment of planting structures, the phenomenon of farmland abandonment has appeared in China. It is of great significance to promptly and accurately grasp the information on dynamic temporal and spatial changes in abandoned farmland to ensure national food security and the sustainable use of cultivated land. Luquan District in Hebei, China was selected as the research area based on multispectral images from Sentinel-2A, Landsat-7, and Landsat-8 combined with methods of random forest (RF) classification and vegetation index change detection. Rules for the identification of abandoned farmland were also developed, and remote sensing monitoring of the abandonment status of the cultivated land was also carried out in the study area. We also obtained the spatial distribution of abandoned and reclaimed farmland and analysed the frequency of farmland abandonment. The results show that the overall accuracy of the land-use time-series map ranged from 90.20% to 96.92% for the study period of 2010–2020. The average rate of farmland abandonment in the study area was 10.62%, with the lowest rate (5.83%) in 2020 and the highest (14.09%) in 2012. From 2011 to 2020, the maximum farmland abandonment area was 3906.02 hm2, and the minimum area was 1618.74 hm2. The farmland abandonment area showed a trend of first increasing and then decreasing. From 2012 to 2020, the maximum area of reclaimed farmland was 291.49 hm2, and the highest rate of reclamation was 14.26%. The overall reclamation rate was low. The abandonment frequency of most of the abandoned farmland was 1–3 years, covering an area of 8193.73 hm2, which comprised 79% of the total area of abandoned farmland. The frequency of abandonment was inversely proportional to the area of abandoned farmland. Farmland abandonment mainly occurred in hilly areas. We expect that our results can provide case studies for long time series in farmland abandonment research and can provide a reference for studying the driving factors, risk assessment, and policymaking with respect to abandoned farmland.


Author(s):  
A. Htitiou ◽  
A. Boudhar ◽  
Y. Lebrini ◽  
T. Benabdelouahab

Abstract. Remote sensing offers spatially explicit and temporally continuous observational data of various land surface parameters such as vegetation index, land surface temperature, soil moisture, leaf area index, and evapotranspiration, which can be widely leveraged for various applications at different scales and contexts. One of the main applications is agricultural monitoring, where a smart system based on precision agriculture requires a set of satellite images with a high resolution, both in time and space to capture the phenological stages and fine spatial details, especially in landscapes with various spatial heterogeneity and temporal variation. These requirements sometimes cannot be provided by a single sensor due to the trade-off required between spatial and temporal resolutions and/or the influence of cloud cover. The data availability of new generation multispectral sensors of Landsat-8 (L8) and Sentinel-2 (S2) satellites offers unprecedented options for such applications. Given this, the current study aims to display how the synergistic use of these optical sensors can efficiently support such an application. Herein, this study proposes a deep learning spatiotemporal data fusion method to fill the need for predicting a dense time series of vegetation index with fine spatial resolution. The results show that the developed method creates more accurate fused NDVI time-series data that were able to derive phenological stages and characteristics in single-crop fields, while keeps more spatial details in such a heterogeneous landscape.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2236 ◽  
Author(s):  
Viviana Gavilán ◽  
Mario Lillo-Saavedra ◽  
Eduardo Holzapfel ◽  
Diego Rivera ◽  
Angel García-Pedrero

Efficient water management in agriculture requires a precise estimate of evapotranspiration ( E T ). Although local measurements can be used to estimate surface energy balance components, these values cannot be extrapolated to large areas due to the heterogeneity and complexity of agriculture environment. This extrapolation can be done using satellite images that provide information in visible and thermal infrared region of the electromagnetic spectrum; however, most current satellite sensors do not provide this end, but they do include a set of spectral bands that allow the radiometric behavior of vegetation that is highly correlated with the E T . In this context, our working hypothesis states that it is possible to generate a strategy of integration and harmonization of the Normalized Difference Vegetation Index ( N D V I ) obtained from Landsat-8 ( L 8 ) and Sentinel-2 ( S 2 ) sensors in order to obtain an N D V I time series used to estimate E T through fit equations specific to each crop type during an agricultural season (December 2017–March 2018). Based on the obtained results it was concluded that it is possible to estimate E T using an N D V I time series by integrating data from both sensors L 8 and S 2 , which allowed to carry out an updated seasonal water balance over study site, improving the irrigation water management both at plot and water distribution system scale.


2021 ◽  
Vol 13 (2) ◽  
pp. 296
Author(s):  
Xing Jin ◽  
Ping Tang ◽  
Thomas Houet ◽  
Thomas Corpetti ◽  
Emilien Gence Alvarez-Vanhard ◽  
...  

Remote-sensing time-series data are significant for global environmental change research and a better understanding of the Earth. However, remote-sensing acquisitions often provide sparse time series due to sensor resolution limitations and environmental factors, such as cloud noise for optical data. Image interpolation is the method that is often used to deal with this issue. This paper considers the deep learning method to learn the complex mapping of an interpolated intermediate image from predecessor and successor images, called separable convolution network for sequence image interpolation. The separable convolution network uses a separable 1D convolution kernel instead of 2D kernels to capture the spatial characteristics of input sequence images and then is trained end-to-end using sequence images. Our experiments, which were performed with unmanned aerial vehicle (UAV) and Landsat-8 datasets, show that the method is effective to produce high-quality time-series interpolated images, and the data-driven deep model can better simulate complex and diverse nonlinear image data information.


2021 ◽  
Vol 13 (23) ◽  
pp. 4863
Author(s):  
Benjamin M. Jones ◽  
Ken D. Tape ◽  
Jason A. Clark ◽  
Allen C. Bondurant ◽  
Melissa K. Ward Jones ◽  
...  

Beavers have established themselves as a key component of low arctic ecosystems over the past several decades. Beavers are widely recognized as ecosystem engineers, but their effects on permafrost-dominated landscapes in the Arctic remain unclear. In this study, we document the occurrence, reconstruct the timing, and highlight the effects of beaver activity on a small creek valley confined by ice-rich permafrost on the Seward Peninsula, Alaska using multi-dimensional remote sensing analysis of satellite (Landsat-8, Sentinel-2, Planet CubeSat, and DigitalGlobe Inc./MAXAR) and unmanned aircraft systems (UAS) imagery. Beaver activity along the study reach of Swan Lake Creek appeared between 2006 and 2011 with the construction of three dams. Between 2011 and 2017, beaver dam numbers increased, with the peak occurring in 2017 (n = 9). Between 2017 and 2019, the number of dams decreased (n = 6), while the average length of the dams increased from 20 to 33 m. Between 4 and 20 August 2019, following a nine-day period of record rainfall (>125 mm), the well-established dam system failed, triggering the formation of a beaver-induced permafrost degradation feature. During the decade of beaver occupation between 2011 and 2021, the creek valley widened from 33 to 180 m (~450% increase) and the length of the stream channel network increased from ~0.6 km to more than 1.9 km (220% increase) as a result of beaver engineering and beaver-induced permafrost degradation. Comparing vegetation (NDVI) and snow (NDSI) derived indices from Sentinel-2 time-series data acquired between 2017 and 2021 for the beaver-induced permafrost degradation feature and a nearby unaffected control site, showed that peak growing season NDVI was lowered by 23% and that it extended the length of the snow-cover period by 19 days following the permafrost disturbance. Our analysis of multi-dimensional remote sensing data highlights several unique aspects of beaver engineering impacts on ice-rich permafrost landscapes. Our detailed reconstruction of the beaver-induced permafrost degradation event may also prove useful for identifying degradation of ice-rich permafrost in optical time-series datasets across regional scales. Future field- and remote sensing-based observations of this site, and others like it, will provide valuable information for the NSF-funded Arctic Beaver Observation Network (A-BON) and the third phase of the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) Field Campaign.


Sign in / Sign up

Export Citation Format

Share Document