scholarly journals Multi-Parametric Climatological Analysis Reveals the Involvement of Fluids in the Preparation Phase of the 2008 Ms 8.0 Wenchuan and 2013 Ms 7.0 Lushan Earthquakes

2020 ◽  
Vol 12 (10) ◽  
pp. 1663 ◽  
Author(s):  
Qinqin Liu ◽  
Angelo De Santis ◽  
Alessandro Piscini ◽  
Gianfranco Cianchini ◽  
Guido Ventura ◽  
...  

A multi-parametric approach was applied to climatological data before the Ms 8.0 2008 Wenchuan and Ms 7.0 2013 Lushan earthquakes (EQs) in order to detect anomalous changes associated to the preparing phase of those large seismic events. A climatological analysis for seismic Precursor Identification (CAPRI) algorithm was used for the detection of anomalies in the time series of four parameters (aerosol optical depth, AOD; skin temperature, SKT; surface latent heat flux, SLHF and total column water vapour, TCWV). Our results show a chain of processes occurred within two months before the EQs: AOD anomalous response is the earliest, followed by SKT, TCWV and SLHF in the EQs. A close spatial relation between the seismogenic Longmenshan fault (LMSF) zone and the extent of the detected anomalies indicates that some changes occurred within the faults before the EQs. The similarity of time sequence of the anomalies between the four parameters may be related to the same process: we interpret the observed anomalies as the consequence of the upraising of gases from a fluid-rich middle/upper crust along pre-existing seismogenic faults, and of their release into the atmosphere. Our multi-parametric analytical approach is able to capture phenomena related to the preparation phase of strong EQs.

2020 ◽  
Vol 24 (6) ◽  
pp. 1175-1188
Author(s):  
Xiao-Ping Fan ◽  
Yi-Cheng He ◽  
Cong-Jie Yang ◽  
Jun-Fei Wang

AbstractBroadband teleseismic waveform data from 13 earthquakes recorded by 70 digital seismic stations were selected to evaluate the inhomogeneity parameters of the crustal medium in the southern Longmenshan fault zone and its adjacent regions using the teleseismic fluctuation wavefield method. Results show that a strong inhomogeneity exists beneath the study region, which can be divided into three blocks according to its structure and tectonic deformation features. These are known as the Sichuan-Qinghai Block, the Sichuan-Yunnan Block, and the Mid-Sichuan Block. The velocity fluctuation ratios of the three blocks are approximately 5.1%, 3.6%, and 5.1% in the upper crust and 5.1%, 3.8%, and 4.9% in the lower crust. The inhomogeneity correlation lengths of the three blocks are about 10.1 km, 14.0 km, and 10.7 km in the upper crust and 11.8 km, 17.0 km, and 11.8 km in the lower crust. The differences in the crustal medium inhomogeneity beneath the Sichuan-Yunnan Block, the Sichuan-Qinghai Block, and the Mid-Sichuan Block may be related to intensive tectonic movement and material flow in the crust and upper mantle.


2020 ◽  
Author(s):  
Dedalo Marchetti ◽  
Alessandro Piscini ◽  
Angelo De Santis ◽  
Caroline Ganglo ◽  
Gianfranco Cianchini ◽  
...  

<p>Applying a multi-parametric approach, we already investigated the preparatory phase of several medium and large (M6.0 ~ M8.3) earthquakes occurred in the last 6 years in different locations in the World. In some cases, a chain of processes from the lithosphere to atmosphere and ionosphere has been successfully detected (e.g. M7.8 Ecuador 2016: Akhoondzadeh, 2018, ASR, https://doi.org/10.1016/j.asr.2017.07.014; Italian seismic sequence (M6.5) 2016-2017: Marchetti et al., 2019, RSoE, https://doi.org/10.1016/j.rse.2019.04.033; M7.5 Indonesia 2018: Marchetti et al., 2019, JAES, https://doi.org/10.1016/j.jseaes.2019.104097). These analyses underline the importance to study all the “spheres” that surround the Earth as suggested by a Geosystemic approach (De Santis et al., 2019, Entropy, https://doi.org/10.3390/e21040412). To analyse the anomalies that occur in the atmosphere we typically calculate the mean and standard deviation of the “historical time series” of the investigated parameter based on around 40 years of data, and then we superpose the value of the same quantity in the earthquake year. If the value overpasses two standard deviations of the historical time series, we define this day/parameter as anomalous. Applying the same methodology presented in previous works that studied climatological parameters such as skin temperature, total column water vapour, aerosols, and SO<sub>2</sub>, which <sub> </sub>seem to provide anomalies possibly related to the earthquake preparation phase (e.g. Piscini et al., 2017, PAGeoph, https://doi.org/10.1007/s00024-017-1597-8), here we investigate more atmospheric parameters proposed as possible precursors in the Lithosphere Atmosphere Ionosphere Coupling (LAIC) models (Pulinets and Ouzounov, 2011, JAES, https://doi.org/10.1016/j.jseaes.2010.03.005) such as methane and surface concentration of carbon monoxide. Other parameters, such as dimethylsulfide could be useful in other geophysical events, such as the volcano eruptions (Piscini et al. PAGeoph 2019, https://doi.org/10.1007/s00024-019-02147-x).</p><p>In this study, we also apply a Worldwide Statistical Correlation (WSC), as it was successfully applied to Swarm satellites electromagnetic anomalies and earthquakes, providing some statistical evidence for such perturbations in ionosphere before the occurrence of M5.5+ earthquakes (De Santis et al., 2019, Sci. Rep., https://doi.org/10.1038/s41598-019-56599-1).</p><p>The statistical approaches applied to these climatological data, provided by meteorological agencies such as ECMWF and NOAA, provides some interesting concentrations of atmospheric anomalies, preceding from days to several weeks the occurrence of the largest earthquakes from 1980 to 2017.</p><p>The study of several chemical and physical (e.g. aerosol particles) components in the atmosphere, the involved physical processes, the chemical reactions and chemical constraints (such as the elements lifetime and interactions in the atmosphere) can help to distinguish which LAIC model is more reliable to produce the observed anomalies before the occurrence of a large earthquake.</p><p> </p>


2020 ◽  
Vol 8 ◽  
Author(s):  
Angelo De Santis ◽  
Gianfranco Cianchini ◽  
Dedalo Marchetti ◽  
Alessandro Piscini ◽  
Dario Sabbagh ◽  
...  

The 2019 M7.1 Ridgecrest earthquake was the strongest one in the last 20 years in California (United States). In a multiparametric fashion, we collected data from the lithosphere (seismicity), atmosphere (temperature, water vapor, aerosol, and methane), and ionosphere (ionospheric parameters from ionosonde, electron density, and magnetic field data from satellites). We analyzed the data in order to identify possible anomalies that cannot be explained by the typical physics of each domain of study and can be likely attributed to the lithosphere-atmosphere-ionosphere coupling (LAIC), due to the preparation phase of the Ridgecrest earthquake. The results are encouraging showing a chain of processes that connect the different geolayers before the earthquake, with the cumulative number of foreshocks and of all other (atmospheric and ionospheric) anomalies both accelerating in the same way as the mainshock is approaching.


2016 ◽  
Vol 59 ◽  
Author(s):  
Gianluca Valensise ◽  
Paola Vannoli ◽  
Roberto Basili ◽  
Lorenzo Bonini ◽  
Pierfrancesco Burrato ◽  
...  

<p><em>We show and discuss the similarities among the 2016 Amatrice (Mw 6.0), 1997 Colfiorito-Sellano (Mw 6.0-5.6) and 2009 L’Aquila (Mw 6.3) earthquakes. They all occurred along the crest of the central Apennines and were caused by shallow dipping faults between 3 and 10 km depth, as shown by their characteristic InSAR signature. We contend that these earthquakes delineate a seismogenic style that is characteristic of this portion of the central Apennines, where the upward propagation of seismogenic faults is hindered by the presence of pre-existing regional thrusts. This leads to an effective decoupling between the deeper seismogenic portion of the upper crust and its uppermost 3 km.The decoupling implies that active faults mapped at the surface do not connect with the seismogenic sources, and that their evolution may be controlled by passive readjustments to coseismic strains or even by purely gravitational motions. Seismic hazard analyses and estimates based on such faults should hence be considered with great caution as they may be all but representative of the true seismogenic potential.</em></p><em></em>


Author(s):  
Akshansha Chauhan ◽  
Rajesh Kumar ◽  
Ramesh Singh

India is vulnerable to all kinds of natural hazards associated with land, ocean, biosphere, atmosphere, and snow/glaciers. These natural hazards impact large areas and the population living in the affected regions. India is surrounded by ocean on three sides and is vulnerable to cyclonic activities. Every year cyclones hit the east and west coasts of India, affecting the population living along the coasts and infrastructure and inland areas. The extent of the affected inland areas depends on the intensity of the cyclone. On 12 October 2014, a strong cyclone “Hudhud” hit the east coast of India that caused a high degree of devastation along the coast. The impact of this cyclone was seen up to the Himalayan region. Detailed analysis of satellite and ground data show a strong coupling between land-ocean-atmosphere associated with the Hudhud cyclone. The contrast between land and ocean temperature was found to be closely related with the formation of the cyclone in the ocean and its movements towards land. Pronounced changes in the ocean, land, atmospheric, and meteorological parameters with the development of the cyclone and its landfall have been observed. Changes in total column ozone (TCO), relative humidity (RH), and volume mixing ratio of CO (CO VMR), water mixing ratio (H2O MMR), surface latent heat flux (SLHF), and aerosol optical properties derived from satellite data show characteristic behavior of the Hudhud cyclone.


Author(s):  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

It is interesting to observe polymers at atomic size resolution. Some works have been reported for thorium pyromellitate by using a STEM (1), or a CTEM (2,3). The results showed that this polymer forms a chain in which thorium atoms are arranged. However, the distance between adjacent thorium atoms varies over a wide range (0.4-1.3nm) according to the different authors.The present authors have also observed thorium pyromellitate specimens by means of a field emission STEM, described in reference 4. The specimen was prepared by placing a drop of thorium pyromellitate in 10-3 CH3OH solution onto an amorphous carbon film about 2nm thick. The dark field image is shown in Fig. 1A. Thorium atoms are clearly observed as regular atom rows having a spacing of 0.85nm. This lattice gradually deteriorated by successive observations. The image changed to granular structures, as shown in Fig. 1B, which was taken after four scanning frames.


Author(s):  
Eva-Maria Mandelkow ◽  
Ron Milligan

Microtubules form part of the cytoskeleton of eukaryotic cells. They are hollow libers of about 25 nm diameter made up of 13 protofilaments, each of which consists of a chain of heterodimers of α-and β-tubulin. Microtubules can be assembled in vitro at 37°C in the presence of GTP which is hydrolyzed during the reaction, and they are disassembled at 4°C. In contrast to most other polymers microtubules show the behavior of “dynamic instability”, i.e. they can switch between phases of growth and phases of shrinkage, even at an overall steady state [1]. In certain conditions an entire solution can be synchronized, leading to autonomous oscillations in the degree of assembly which can be observed by X-ray scattering (Fig. 1), light scattering, or electron microscopy [2-5]. In addition such solutions are capable of generating spontaneous spatial patterns [6].In an earlier study we have analyzed the structure of microtubules and their cold-induced disassembly by cryo-EM [7]. One result was that disassembly takes place by loss of protofilament fragments (tubulin oligomers) which fray apart at the microtubule ends. We also looked at microtubule oscillations by time-resolved X-ray scattering and proposed a reaction scheme [4] which involves a cyclic interconversion of tubulin, microtubules, and oligomers (Fig. 2). The present study was undertaken to answer two questions: (a) What is the nature of the oscillations as seen by time-resolved cryo-EM? (b) Do microtubules disassemble by fraying protofilament fragments during oscillations at 37°C?


2001 ◽  
Vol 15 (4) ◽  
pp. 256-274 ◽  
Author(s):  
Caterina Pesce ◽  
Rainer Bösel

Abstract In the present study we explored the focusing of visuospatial attention in subjects practicing and not practicing activities with high attentional demands. Similar to the studies of Castiello and Umiltà (e. g., 1990) , our experimental procedure was a variation of Posner's (1980) basic paradigm for exploring covert orienting of visuospatial attention. In a simple RT-task, a peripheral cue of varying size was presented unilaterally or bilaterally from a central fixation point and followed by a target at different stimulus-onset-asynchronies (SOAs). The target could occur validly inside the cue or invalidly outside the cue with varying spatial relation to its boundary. Event-related brain potentials (ERPs) and reaction times (RTs) were recorded to target stimuli under the different task conditions. RT and ERP findings showed converging aspects as well as dissociations. Electrophysiological results revealed an amplitude modulation of the ERPs in the early and late Nd time interval at both anterior and posterior scalp sites, which seems to be related to the effects of peripheral informative cues as well as to the attentional expertise. Results were: (1) shorter latency effects confirm the positive-going amplitude enhancement elicited by unilateral peripheral cues and strengthen the criticism against the neutrality of spatially nonpredictive peripheral cueing of all possible target locations which is often presumed in behavioral studies. (2) Longer latency effects show that subjects with attentional expertise modulate the distribution of the attentional resources in the visual space differently than nonexperienced subjects. Skilled practice may lead to minimizing attentional costs by automatizing the use of a span of attention that is adapted to the most frequent task demands and endogenously increases the allocation of resources to cope with less usual attending conditions.


Sign in / Sign up

Export Citation Format

Share Document