scholarly journals Temperature and Humidity Profile Retrieval from FY4-GIIRS Hyperspectral Data Using Artificial Neural Networks

2020 ◽  
Vol 12 (11) ◽  
pp. 1872
Author(s):  
Xi Cai ◽  
Yansong Bao ◽  
George P. Petropoulos ◽  
Feng Lu ◽  
Qifeng Lu ◽  
...  

This study proposes a new technique for retrieving temperature and humidity profiles based on Artificial Neural Networks (ANNs) using data acquired from the GIIRS (Geosynchronous Interferometric Infrared Sounder) L1 and ERA-Interim (European Centre for Medium-Range Weather Forecasts Reanalysis). The approach is also compared against another method that uses simulated data from the radiative transfer model to construct the retrieval network. Furthermore, the two methods of network construction are evaluated in the North China Plain for July and August 2018, for which ground validated observations concurrent to the satellite data were available. In summary, the results showed that: (1) the ANN built with the GIIRS L1 and the EC data is superior to that built with the forward simulation and EC data in retrieval accuracy; (2) the retrieval accuracy for the troposphere exceeds that for the stratosphere; (3) the root mean square errors (RMSEs) of the relative humidity in the troposphere as retrieved by the two ANNs are 6.003% and 10.608%, respectively; (4) a relatively low correlation (R) between the simulated and observed radiance of the GIIRS is found, ranging between 720 and 736.875 cm−1, and the correlation between the simulated and observed radiance of the water vapor channels exceeds that between the temperature channels; (5) compared with Atmospheric Infrared Sounder’s (AIRS’) products, our retrieved temperature profiles exhibit preferable consistency and the humidity retrievals also show an acceptable accuracy. Our study offers important insights towards improving our ability to retrieve atmospheric temperature and humidity profiles from the most sophisticated Earth Observation instruments such as the GIIRS of the FY-4 satellite, which could assist in expanding the use of those products globally.

Author(s):  
Behzad Vaferi

Nanofluids have recently been considered as one of the most popular working fluid in heat transfer and fluid mechanics. Accurate estimation of thermophysical properties of nanofluids is required for the investigation of their heat transfer performance. Thermal conductivity coefficient, convective heat transfer coefficient, and viscosity are some the most important thermophysical properties that directly influence on the application of nanofluids. The aim of the present chapter is to develop and validate artificial neural networks (ANNs) to estimate these thermophysical properties with acceptable accuracy. Some simple and easy measurable parameters including type of nanoparticle and base fluid, temperature and pressure, size and concentration of nanoparticles, etc. are used as independent variables of the ANN approaches. The predictive performance of the developed ANN approaches is validated with both experimental data and available empirical correlations. Various statistical indices including mean square errors (MSE), root mean square errors (RMSE), average absolute relative deviation percent (AARD%), and regression coefficient (R2) are used for numerical evaluation of accuracy of the developed ANN models. Results confirm that the developed ANN models can be regarded as a practical tool for studying the behavior of those industrial applications, which have nanofluids as operating fluid.


Author(s):  
Hamid Reza Niazkar ◽  
Majid Niazkar

Abstract Background Millions of people have been infected worldwide in the COVID-19 pandemic. In this study, we aim to propose fourteen prediction models based on artificial neural networks (ANN) to predict the COVID-19 outbreak for policy makers. Methods The ANN-based models were utilized to estimate the confirmed cases of COVID-19 in China, Japan, Singapore, Iran, Italy, South Africa and United States of America. These models exploit historical records of confirmed cases, while their main difference is the number of days that they assume to have impact on the estimation process. The COVID-19 data were divided into a train part and a test part. The former was used to train the ANN models, while the latter was utilized to compare the purposes. The data analysis shows not only significant fluctuations in the daily confirmed cases but also different ranges of total confirmed cases observed in the time interval considered. Results Based on the obtained results, the ANN-based model that takes into account the previous 14 days outperforms the other ones. This comparison reveals the importance of considering the maximum incubation period in predicting the COVID-19 outbreak. Comparing the ranges of determination coefficients indicates that the estimated results for Italy are the best one. Moreover, the predicted results for Iran achieved the ranges of [0.09, 0.15] and [0.21, 0.36] for the mean absolute relative errors and normalized root mean square errors, respectively, which were the best ranges obtained for these criteria among different countries. Conclusion Based on the achieved results, the ANN-based model that takes into account the previous fourteen days for prediction is suggested to predict daily confirmed cases, particularly in countries that have experienced the first peak of the COVID-19 outbreak. This study has not only proved the applicability of ANN-based model for prediction of the COVID-19 outbreak, but also showed that considering incubation period of SARS-COV-2 in prediction models may generate more accurate estimations.


2019 ◽  
Vol 9 (17) ◽  
pp. 3502 ◽  
Author(s):  
Nicola Baldo ◽  
Evangelos Manthos ◽  
Matteo Miani

The present paper discusses the analysis and modeling of laboratory data regarding the mechanical characterization of hot mix asphalt (HMA) mixtures for road pavements, by means of artificial neural networks (ANNs). The HMAs investigated were produced using aggregate and bitumen of different types. Stiffness modulus (ITSM) and Marshall stability (MS) and quotient (MQ) were assumed as mechanical parameters to analyze and predict. The ANN modeling approach was characterized by multiple layers, the k-fold cross validation (CV) method, and the positive linear transfer function. The effectiveness of such an approach was verified in terms of the coefficients of correlation ( R ) and mean square errors; in particular, R values were within the range 0.965 – 0.919 in the training phase and 0.881 – 0.834 in the CV testing phase, depending on the predicted parameters.


Author(s):  
Muhammad Tayyab ◽  
Jianzhong Zhou ◽  
Rana Adnan ◽  
Changqing Meng ◽  
Aqeela Zahra

Precise and correct estimation of streamflow is important for the operative progression in water resources systems. The artificial intelligence approaches; such as artificial neural networks (ANN) have been applied for efficiently tackling the hydrological matters like streamflow forecasting in this study at upper Yangtze River. The objective is to investigate the certainty of monthly streamflow by applying artificial neural networks including Generalized Regression Network (GRNN). To overcome the non-linearity problem of streamflow, artificial neural networks integrated with discrete wavelet transform (DWT). Data has been analyzed by comparing the simulation outputs of the models with the correlation coefficient (R) root mean square errors (RMSE). It is found that the decomposition technique DWT has ability to improve the forecasting results as compare to single applied artificial neural networks. Moreover, all applied models are separately applies on the peak values as well which also have showed that intergrated model has more ability to catch the peak values


2021 ◽  
Vol 13 (11) ◽  
pp. 2157
Author(s):  
Chunming Zhang ◽  
Mingjian Gu ◽  
Yong Hu ◽  
Pengyu Huang ◽  
Tianhang Yang ◽  
...  

Satellite infrared hyperspectral instruments can obtain a wealth of atmospheric spectrum information. In order to obtain high-precision atmospheric temperature and humidity profiles, we used the traditional One-Dimensional Variational (1D-Var) retrieval algorithm, combined with the information capacity-weight function coverage method to select the spectrum channel. In addition, an Artificial Neural Network (ANN) algorithm was introduced to correct the satellite observation data error and compare it with the conventional error correction method. Finally, to perform the temperature and humidity profile retrieval calculation, we used the FY-3D satellite HIRAS (Hyperspectral Infrared Atmospheric Sounder) infrared hyperspectral data and combined the RTTOV (Radiative Transfer for TOVS) radiative transfer model to build an atmospheric temperature and humidity profile retrieval system. We used data on the European region from July to August 2020 to carry out the training and testing of the retrieval system, respectively, and used the balloon-retrieved sounding data of temperature and humidity published by the University of Wyoming as standard truth values to evaluate the retrieval accuracy. Our preliminary research results show that, compared with the retrieval results of conventional deviation correction, the introduction of ANN algorithm error correction can improve the retrieval accuracy of the retrieval system effectively and the RMSE (Root-Mean-Square Error) of the temperature and humidity has a maximum accuracy of improvement of about 0.5 K (The K represents the thermodynamic temperature unit) and 5%, respectively. The temperature and humidity results obtained by the retrieval system were compared with Global Forecast System (GFS) forecast data. The retrieved temperature RMSE was less than 1.5 K on average, which was better than that for the GFS; the humidity RMSE was less than 15% as a whole, and better than the forecast profile between 100 hpa (1 hpa is 100 pa, the pa represents the air pressure unit) and 600 hpa. Compared with AIRS (Atmospheric Infrared Sounder) products, the result of the retrieval system also had a higher accuracy. The main improvement of the temperature was at 200 hpa and 800 hpa, with maximum accuracy improvements of 2 K and 1.5 K, respectively. The RMSE of the humidity retrieved by the system was also better than the AIRS humidity products at most pressure levels, and the error of maximum difference could reach 15%. After combining the two algorithms, the FY-3D/HIRAS infrared hyperspectral retrieval system could obtain higher-precision temperature and humidity profiles, and relevant results could provide a reference for improving the accuracy of business products.


2021 ◽  
Vol 51 ◽  
Author(s):  
Bruno Vinícius Castro Guimarães ◽  
Sérgio Luiz Rodrigues Donato ◽  
Ignacio Aspiazú ◽  
Alcinei Mistico Azevedo

ABSTRACT Prediction models may contribute to data analysis and decision-making in the management of a crop. This study aimed to evaluate the feasibility of predicting the yield of ‘Prata-Anã’ and ‘BRS Platina’ banana plants by means of artificial neural networks, as well as to determine the most important morphological descriptors for this purpose. The following characteristics were measured: plant height; perimeter of the pseudostem at the ground level, at 30 cm and 100 cm; number of live leaves at harvest; stalk mass, length and diameter; number of hands and fruits; bunches and hands masses; hands average mass; and ratio between the stalk and bunch masses. The data were submitted to artificial neural networks analysis using the R software. The best adjustments were obtained with two and three neurons at the intermediate layer, respectively for ‘Prata-Anã’ and ‘BRS Platina’. These models presented the lowest mean square errors, which correspond to the higher proximity between the predicted and the real data, and, therefore, a higher efficiency of the networks in the yield prediction. By the coefficient of determination, the best adjustments were found for ‘Prata-Anã’ (R² = 0.99 for all the network compositions), while, for ‘BRS Platina’, the data adjustment enabled an R² with values between 0.97 and 1.00, approximately. Yield predictions for ‘Prata-Anã’ and ‘BRS Platina’ were obtained with high efficiency by using artificial neural networks.


Sign in / Sign up

Export Citation Format

Share Document