scholarly journals The Estimation of Surface Albedo from DSCOVR EPIC

2020 ◽  
Vol 12 (11) ◽  
pp. 1897
Author(s):  
Qiuyue Tian ◽  
Qiang Liu ◽  
Jie Guang ◽  
Leiku Yang ◽  
Hanwei Zhang ◽  
...  

Surface albedo is an important parameter in climate models. The main way to obtain continuous surface albedo for large areas is satellite remote sensing. However, the existing albedo products rarely meet daily-scale requirements, which has a large impact on climate change research and rapid dynamic changes of surface analysis. The Earth Polychromatic Imaging Camera (EPIC) on the Deep Space Climate Observatory (DSCOVR) platform, which was launched into the Sun–Earth’s first Lagrange Point (L1) orbit, can provide spectral images of the entire sunlit face of Earth with 10 narrow channels (from 317 to 780 nm). As EPIC can provide high-temporal resolution data, it is beneficial to explore the feasibility of EPIC to estimate high-temporal resolution surface albedo. In this study, hourly surface albedo was calculated based on EPIC observation data. Then, the estimated albedo results were validated by ground-based observations of different land cover types. The results show that the EPIC albedo is basically consistent with the trend of the ground-based observations in the whole time series variation. The diurnal variation of the surface albedo from the hourly EPIC albedo exhibits a “U” shape curve, which has the same trend as the ground-based observations. Therefore, EPIC is helpful to enhance the temporal resolution of surface albedo to diurnal. Surfaces with a three-dimensional structure that casts shadows display the hotspot effect, producing a reflectance peak in the retro-solar direction and lower reflectance at viewing angles away from the solar direction. DSCOVR observes the entire sunlit face of the Earth, which is helpful to make up for the deficiency in the observations of traditional satellites in the hotspot direction in bidirectional reflectance distribution function (BRDF) research, and can help to improve the underestimation of albedo in the direction of hotspot observation.

Author(s):  
Q. Y. Tian ◽  
Q. Liu ◽  
H. W. Zhang ◽  
Y. H. Che ◽  
Y. N. Wen ◽  
...  

Abstract. Land surface albedo plays an important role in climate change research. Satellite remote sensing has the characteristic of wide observation range, and it can make repeated observations on the same area. Therefore, using the remote sensing data to retrieve surface albedo becomes a main method to obtain the surface albedo in a wide range or even on a global scale. However, the time resolution of existing albedo products is usually low, which has a great impact on the analysis of rapid changes in surface vegetation and the climate change research. The Deep Space Climate Observatory (DSCOVR) was launched to a sun-earth first Lagrange point (L1) orbit, which is a new and unique vantage point to observe the continuously full, sunlit disk of Earth. DSCOVR can provide observation data with high time resolution, therefore, it is necessary to explore the feasibility of the new sensor DSCOVR/EPIC inversion of the daily albedo product. The relationship between the surface broadband albedo and the surface reflectance was established, and then the surface albedo with high temporal resolution was calculated using the DSCOVR/EPIC data. The Inner Mongolia Autonomous Region and parts of the Sahara Desert were selected to verify the accuracy of DSCOVR albedo compared with MODIS albedo. The results show that the correlation coefficients between DSCOVR albedo and MODIS albedo are greater than 0.7 and RMSE are less than 0.05 both in visible band and shortwave band. It can be seen that this method can be used for the albedo retrieval using DSCOVR/EPIC data.


2013 ◽  
Vol 17 (6) ◽  
pp. 2121-2129 ◽  
Author(s):  
N. F. Liu ◽  
Q. Liu ◽  
L. Z. Wang ◽  
S. L. Liang ◽  
J. G. Wen ◽  
...  

Abstract. Land-surface albedo plays a critical role in the earth's radiant energy budget studies. Satellite remote sensing provides an effective approach to acquire regional and global albedo observations. Owing to cloud coverage, seasonal snow and sensor malfunctions, spatiotemporally continuous albedo datasets are often inaccessible. The Global LAnd Surface Satellite (GLASS) project aims at providing a suite of key land surface parameter datasets with high temporal resolution and high accuracy for a global change study. The GLASS preliminary albedo datasets are global daily land-surface albedo generated by an angular bin algorithm (Qu et al., 2013). Like other products, the GLASS preliminary albedo datasets are affected by large areas of missing data; beside, sharp fluctuations exist in the time series of the GLASS preliminary albedo due to data noise and algorithm uncertainties. Based on the Bayesian theory, a statistics-based temporal filter (STF) algorithm is proposed in this paper to fill data gaps, smooth albedo time series, and generate the GLASS final albedo product. The results of the STF algorithm are smooth and gapless albedo time series, with uncertainty estimations. The performance of the STF method was tested on one tile (H25V05) and three ground stations. Results show that the STF method has greatly improved the integrity and smoothness of the GLASS final albedo product. Seasonal trends in albedo are well depicted by the GLASS final albedo product. Compared with MODerate resolution Imaging Spectroradiometer (MODIS) product, the GLASS final albedo product has a higher temporal resolution and more competence in capturing the surface albedo variations. It is recommended that the quality flag should be always checked before using the GLASS final albedo product.


2021 ◽  
Author(s):  
Yanhong Zhang ◽  
Xiaohui Shi ◽  
Min Wen

Abstract Limited by the lack of atmospheric observation data over the ocean and the absence of a comprehensive set of track data for monsoon low pressure systems (MLPSs), an in-depth understanding of the activity of East Asian MLPSs has not been acquired. In recent years, advancements in satellite remote sensing and data assimilation techniques have enabled the creation of numerous high-resolution global reanalysis datasets. Additionally, with the improvement of tracking algorithms, two sets of global MLPS track data (HB2015 and VB2020) have been published. This study seeks to understand the fidelity of the two datasets with respect to the East Asian monsoon. The genesis location, movement path, and three-dimensional structure of the East Asian MLPSs obtained using HB2015 and VB2020 are compared, and the atmospheric circulation conditions of typical MLPSs are analyzed. The results show that both datasets are able to generate MLPSs with identical structure for the East Asian Monsoon, and they provide similar results in terms of the location and monthly frequency. Compared to the HB2015, the VB2020 adopts a more stringent set of thresholds for the determination of the MLPS genesis and extinction and a more rigorous tracking algorithm. Therefore, it yields a lower count of MLPSs with significantly shorter lifetimes. However, the MLPSs identified by the VB2020 all have cyclonic circulations in the proximity of their central areas as they continue their movement. In this sense, the results generated by the VB2020 are more consistent with the observed MLPSs and hence are more reliable. However, the tracking can end prematurely with this dataset.


We attempt to catalogue those features of the three-dimensional structure of the Earth that are well-constrained by low-frequency data (i.e. periods longer than about 125 seconds). The dominant signals in such data are the surface-wave equivalent modes whose phase characteristics are mainly affected by a large scale structure of harmonic degree two in the upper mantle. Available aspherical models predict this phase behaviour quite well, but do not give an accurate prediction of the observed waveforms and we must appeal to higher-order structure an d /o r coupling effects to give the observed complexity of the data. Strong splitting of modes which sample the cores of the Earth is also observed and, though we do not yet have a model of aspherical structure which gives quantitative agreement with these data, anisotropy or large-scale aspherical structure in the inner core appears to be required to model the observed signal.


Nature ◽  
1987 ◽  
Vol 325 (6103) ◽  
pp. 405-411 ◽  
Author(s):  
Domenico Giardini ◽  
Xiang-Dong Li ◽  
John H. Woodhouse

2015 ◽  
Vol 75 (6) ◽  
pp. 2350-2361 ◽  
Author(s):  
Mayur Narsude ◽  
Daniel Gallichan ◽  
Wietske van der Zwaag ◽  
Rolf Gruetter ◽  
José P. Marques

2020 ◽  
Vol 12 (23) ◽  
pp. 3888
Author(s):  
Mingyuan Peng ◽  
Lifu Zhang ◽  
Xuejian Sun ◽  
Yi Cen ◽  
Xiaoyang Zhao

With the growing development of remote sensors, huge volumes of remote sensing data are being utilized in related applications, bringing new challenges to the efficiency and capability of processing huge datasets. Spatiotemporal remote sensing data fusion can restore high spatial and high temporal resolution remote sensing data from multiple remote sensing datasets. However, the current methods require long computing times and are of low efficiency, especially the newly proposed deep learning-based methods. Here, we propose a fast three-dimensional convolutional neural network-based spatiotemporal fusion method (STF3DCNN) using a spatial-temporal-spectral dataset. This method is able to fuse low-spatial high-temporal resolution data (HTLS) and high-spatial low-temporal resolution data (HSLT) in a four-dimensional spatial-temporal-spectral dataset with increasing efficiency, while simultaneously ensuring accuracy. The method was tested using three datasets, and discussions of the network parameters were conducted. In addition, this method was compared with commonly used spatiotemporal fusion methods to verify our conclusion.


2010 ◽  
Vol 23 (7) ◽  
pp. 1621-1635 ◽  
Author(s):  
Jennifer L. Catto ◽  
Len C. Shaffrey ◽  
Kevin I. Hodges

Abstract Composites of wind speeds, equivalent potential temperature, mean sea level pressure, vertical velocity, and relative humidity have been produced for the 100 most intense extratropical cyclones in the Northern Hemisphere winter for the 40-yr ECMWF Re-Analysis (ERA-40) and the high resolution global environment model (HiGEM). Features of conceptual models of cyclone structure—the warm conveyor belt, cold conveyor belt, and dry intrusion—have been identified in the composites from ERA-40 and compared to HiGEM. Such features can be identified in the composite fields despite the smoothing that occurs in the compositing process. The surface features and the three-dimensional structure of the cyclones in HiGEM compare very well with those from ERA-40. The warm conveyor belt is identified in the temperature and wind fields as a mass of warm air undergoing moist isentropic uplift and is very similar in ERA-40 and HiGEM. The rate of ascent is lower in HiGEM, associated with a shallower slope of the moist isentropes in the warm sector. There are also differences in the relative humidity fields in the warm conveyor belt. In ERA-40, the high values of relative humidity are strongly associated with the moist isentropic uplift, whereas in HiGEM these are not so strongly associated. The cold conveyor belt is identified as rearward flowing air that undercuts the warm conveyor belt and produces a low-level jet, and is very similar in HiGEM and ERA-40. The dry intrusion is identified in the 500-hPa vertical velocity and relative humidity. The structure of the dry intrusion compares well between HiGEM and ERA-40 but the descent is weaker in HiGEM because of weaker along-isentrope flow behind the composite cyclone. HiGEM’s ability to represent the key features of extratropical cyclone structure can give confidence in future predictions from this model.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 221 ◽  
Author(s):  
Andreas D. Flouris ◽  
Glen P. Kenny

In the aftermath of the Paris Agreement, there is a crucial need for scientists in both thermal physiology and climate change research to develop the integrated approaches necessary to evaluate the health, economic, technological, social, and cultural impacts of 1.5°C warming. Our aim was to explore the fidelity of remote temperature measurements for quantitatively identifying the continuous redistribution of heat within both the Earth and the human body. Not accounting for the regional distribution of warming and heat storage patterns can undermine the results of thermal physiology and climate change research. These concepts are discussed herein using two parallel examples: the so-called slowdown of the Earth’s surface temperature warming in the period 1998-2013; and the controversial results in thermal physiology, arising from relying heavily on core temperature measurements. In total, the concept of heat is of major importance for the integrity of systems, such as the Earth and human body. At present, our understanding about the interplay of key factors modulating the heat distribution on the surface of the Earth and in the human body remains incomplete. Identifying and accounting for the interconnections among these factors will be instrumental in improving the accuracy of both climate models and health guidelines.


Sign in / Sign up

Export Citation Format

Share Document