scholarly journals A Novel Feature Extension Method for the Forest Disaster Monitoring Using Multispectral Data

2020 ◽  
Vol 12 (14) ◽  
pp. 2261 ◽  
Author(s):  
Yinghui Quan ◽  
Xian Zhong ◽  
Wei Feng ◽  
Gabriel Dauphin ◽  
Lianru Gao ◽  
...  

Remote sensing images classification is the key technology for monitoring forest changes. Texture features have been demonstrated to have better effectiveness than spectral features in the improvement of the classification accuracy. The accuracy of extracting texture information by window-based method depends on the choice of the window size. Moreover, the size should ideally match the spatial scale of the object or class under consideration. However, most of the existing texture feature extraction methods are all based on a single window and do not adequately consider the scale of different objects. Our first proposition is to use a composite window for extracting texture features, which is a small window surrounded by a larger window. Our second proposition is to reinforce the performance of the trained ensemble classifier by training it using only the most important features. Considering the advantages of random forest classifier, such as fast training speed and few parameters, these features feed this classifier. Measures of feature importance are estimated along with the growth of the base classifiers, here decision trees. We aim to classify each pixel of the forest images disturbed by hurricanes and fires in three classes, damaged, not damaged, or unknown, as this could be used to compute time-dependent aggregates. In this study, two research areas—Nezer Forest in France and Blue Mountain Forest in Australia—are utilized to validating the effectiveness of the proposed method. Numerical simulations show increased performance and improved monitoring ability of forest disturbance when using these two propositions. When compared with the reference methods, the best increase of the overall accuracy obtained by the proposed algorithm is 4.77% and 2.96% on the Nezer forest data and Blue Mountain forest data, respectively.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Salman Qadri ◽  
Dost Muhammad Khan ◽  
Syed Furqan Qadri ◽  
Abdul Razzaq ◽  
Nazir Ahmad ◽  
...  

Data fusion is a powerful tool for the merging of multiple sources of information to produce a better output as compared to individual source. This study describes the data fusion of five land use/cover types, that is, bare land, fertile cultivated land, desert rangeland, green pasture, and Sutlej basin river land derived from remote sensing. A novel framework for multispectral and texture feature based data fusion is designed to identify the land use/land cover data types correctly. Multispectral data is obtained using a multispectral radiometer, while digital camera is used for image dataset. It has been observed that each image contained 229 texture features, while 30 optimized texture features data for each image has been obtained by joining together three features selection techniques, that is, Fisher, Probability of Error plus Average Correlation, and Mutual Information. This 30-optimized-texture-feature dataset is merged with five-spectral-feature dataset to build the fused dataset. A comparison is performed among texture, multispectral, and fused dataset using machine vision classifiers. It has been observed that fused dataset outperformed individually both datasets. The overall accuracy acquired using multilayer perceptron for texture data, multispectral data, and fused data was 96.67%, 97.60%, and 99.60%, respectively.


2021 ◽  
Vol 13 (13) ◽  
pp. 2437
Author(s):  
Yingxin Xiao ◽  
Yingying Dong ◽  
Wenjiang Huang ◽  
Linyi Liu ◽  
Huiqin Ma

By combining the spectral and texture features of images captured by unmanned aerial vehicles (UAVs), the accurate and timely detection of wheat Fusarium head blight (FHB) can be realized. This study presents a methodology to select the optimal window size of the gray-level co-occurrence matrix (GLCM) to extract texture features from UAV images for FHB detection. Host conditions and the disease distribution were combined to construct the model, and its overall accuracy, sensitivity, and generalization ability were evaluated. First, the sensitive spectral features and bands of the UAV-derived hyperspectral images were obtained, and then texture features were selected. Subsequently, spectral features and texture features extracted from windows of different sizes were input to classify the area of severe FHB. According to the model comparison, the optimal window size was obtained. With the collinearity between features eliminated, the best performance of the logistic model reached, with an accuracy, F1 score, and area under the receiver operating characteristic curve of 0.90, 0.79, and 0.79, respectively, when the window size of the GLCM was 5×5 pixels on May 3, and of 0.90, 0.83, and 0.82, respectively, when the size was 17×17 pixels on May 8. The results showed that the selection of an appropriate GLCM window size for texture feature extraction enabled more accurate disease detection.


2019 ◽  
Vol 11 (14) ◽  
pp. 1636 ◽  
Author(s):  
Xudong Lai ◽  
Jingru Yang ◽  
Yongxu Li ◽  
Mingwei Wang

Building extraction is an important way to obtain information in urban planning, land management, and other fields. As remote sensing has various advantages such as large coverage and real-time capability, it becomes an essential approach for building extraction. Among various remote sensing technologies, the capability of providing 3D features makes the LiDAR point cloud become a crucial means for building extraction. However, the LiDAR point cloud has difficulty distinguishing objects with similar heights, in which case texture features are able to extract different objects in a 2D image. In this paper, a building extraction method based on the fusion of point cloud and texture features is proposed, and the texture features are extracted by using an elevation map that expresses the height of each point. The experimental results show that the proposed method obtains better extraction results than that of other texture feature extraction methods and ENVI software in all experimental areas, and the extraction accuracy is always higher than 87%, which is satisfactory for some practical work.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Ying Wu ◽  
Jikun Liu

AbstractWith the rapid development of gymnastics technology, novel movements are also emerging. Due to the emergence of various complicated new movements, higher requirements are put forward for college gymnastics teaching. Therefore, it is necessary to combine the multimedia simulation technology to construct the human body rigid model and combine the image texture features to display the simulation image in texture form. In the study, GeBOD morphological database modeling was used to provide the data needed for the modeling of the whole-body human body of the joint and used for dynamics simulation. Simultaneously, in order to analyze and summarize the technical essentials of the innovative action, this experiment compared and analyzed the hem stage of the cross-headstand movement of the subject and the hem stage of the 180° movement. Research shows that the method proposed in this paper has certain practical effects.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Joshua Shur ◽  
Matthew Blackledge ◽  
James D’Arcy ◽  
David J. Collins ◽  
Maria Bali ◽  
...  

Abstract Purpose To evaluate robustness and repeatability of magnetic resonance imaging (MRI) texture features in water and tissue phantom test-retest study. Materials and methods Separate water and tissue phantoms were imaged twice with the same protocol in a test-retest experiment using a 1.5-T scanner. Protocols were acquired to favour signal-to-noise ratio and resolution. Forty-six features including first order statistics and second-order texture features were extracted, and repeatability was assessed by calculating the concordance correlation coefficient. Separately, base image noise and resolution were manipulated in an in silico experiment, and robustness of features was calculated by assessing percentage coefficient of variation and linear correlation of features with noise and resolution. These simulation data were compared with the acquired data. Features were classified by their degree (high, intermediate, or low) of robustness and repeatability. Results Eighty percent of the MRI features were repeatable (concordance correlation coefficient > 0.9) in the phantom test-retest experiment. The majority (approximately 90%) demonstrated a strong or intermediate correlation with image acquisition parameter, and 19/46 (41%) and 13/46 (28%) of features were highly robust to noise and resolution, respectively (coefficient of variation < 5%). Agreement between the acquired and simulation data varied, with the range of agreement within feature classes between 11 and 92%. Conclusion Most MRI features were repeatable in a phantom test-retest study. This phantom data may serve as a lower limit of feature MRI repeatability. Robustness of features varies with acquisition parameter, and appropriate features can be selected for clinical validation studies.


2018 ◽  
Vol 7 (2.20) ◽  
pp. 291 ◽  
Author(s):  
B Saroja ◽  
A Selwin Mich Priyadharson

Colon or Bowel or Colorectal Cancer (CRC) is commonly determined by diagnosing a sample of colon tissue and further analysed by medical imaging. The colon tissue classification method count on specific changes between texture features extracted from benign and malignant regions. The variations in the image acquisition methods effects the colon tissue analysis. In this paper, an Upgraded Spatial Gray Level Dependence Matrices (U-SGLDM) is emphasized to extract textural features. The licensed image set of all applicable types of tissues within colon cancer are used for experimentation. Several texture feature sets are extracted to show the significant differences among the eight colon cancer biopsy images in the image data set. The fractal dimension-Hurst Coefficient is added to U-SGLDM for long range assessment. The Prominence of the analysis evoked in the representation of histopathological image structure over longer periods.  


2021 ◽  
Vol 19 (7) ◽  
pp. 41-47
Author(s):  
Suha Raheem Hilal ◽  
Hussain S. Hasan ◽  
Ali M. Hasan

The aim of study is building new program for processing MRI images using MATLAB and to investigate different breast MRI detection algorithms that inform normal and abnormal scans of MRI. In this research an algorithm is proposed to extract texture feature and inform normal and abnormal scans of MRI. First, the MRI scans are pre- processed by image enhancement, intensity normalization, background segmentation and detection of mirror symmetry of breast. Second, the proposed gray level co- occurrence matrix (GLCM) and gray level run length matrix (GLRLM) methods are used to extract texture features from MRI T2-weighted and STIR images. Finally, these features are classified into normal and abnormal by using long short term memory (LSTM) model. The research will be validated using 326 datasets that downloaded from cancer imaging archive (TCIA). The achieved classification accuracy was 98.80%.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi142-vi142
Author(s):  
Kaylie Cullison ◽  
Garrett Simpson ◽  
Danilo Maziero ◽  
Kolton Jones ◽  
Radka Stoyanova ◽  
...  

Abstract A dilemma in treating glioblastoma is that MRI after chemotherapy and radiation therapy (chemoRT) shows areas of presumed tumor growth in up to 50% of patients. These areas can represent true progression (TP), tumor growth with tumors non-responsive to treatment, or pseudoprogression (PP), edema and tumor necrosis with favorable treatment response. On imaging, TP and PP are usually not discernable. Patients in this study undergo six weeks of chemoRT on a combination MRI/RT device, receiving daily MRIs. The goal of this study is to explore the correlation of radiomics features with progression. The tumor lesion and surrounding areas of growth/edema were manually outlined as regions of interest (ROIs) for each daily T2-weighted MRI scan. The ROIs were used to calculate texture features: statistical features based on the gray-level co-occurrence matrix (GLCM), the gray-level zone size matrix (GLZSM), the gray-level run length matrix (GLRLM), and the neighborhood gray-tone difference matrix (NGTDM). Each of these matrix classes describe the probability of spatial relationships of gray levels occurring within the ROI. Daily texture features were averaged per week of treatment for each patient. Patient response was retrospectively defined as no progression (NP), TP, or PP. A Kruskal-Wallis test was performed to identify texture features that correlated most strongly with patient response. Forty texture features were calculated for 12 patients (19 treated, 7 excluded due to no T2 lesion or progression status unknown, 6 NP, 3 TP, 3 PP). There was a trend of more texture features correlating significantly with response in weeks 4-6 of treatment, compared to weeks 1-3. A particular texture feature, GLSZM Small Zone Low Gray-Level Emphasis, showed increasing difference between PP and TP over time, with significant difference during week 6 of treatment (p=0.0495). Future directions include correlating early outcomes with greater numbers of patients and daily multiparametric MRI.


2021 ◽  
Vol 39 (1B) ◽  
pp. 67-79
Author(s):  
Mauj H. Abd al kreem ◽  
Abd allameer A. Karim

Recent advances in computer vision have allowed wide-ranging applications in every area of ​​life. One such area of ​​application is the classification of fresh products, but the classification of fruits and vegetables has proven to be a complex problem and needs further development. In recent years, various machine learning techniques have been exploited with many methods of describing the different features of fruit and vegetable classification in many real-life applications. Classification of fruits and vegetables presents significant challenges due to similarities between layers and irregular characteristics within the class.Hence , in this work, three feature extractor/ descriptor which are local binary pattern (LBP), gray level co-occurrence matrix (GLCM) and, histogram of oriented gradient(HoG) has been proposed to extract fruite features , the  extracted  features have been saved in three feature vectors , then desicion tree classifier has been proposed to classify the fruit types. fruits 360 datasets  is  used  in this work,   where 70% of the dataset were used  in the training phase while 30% of it used in the testing phase. The three proposed feature extruction methods plus the tree  classifier have been used to  classifying  fruits 360 images, results show that the the three feature extraction methods  give a promising results , while the HoG method yielded a poerfull results in which  the accuracy obtained is 96%.


2020 ◽  
Vol 12 (3) ◽  
pp. 27-44
Author(s):  
Gulivindala Suresh ◽  
Chanamallu Srinivasa Rao

Copy-move forgery (CMF) is an established process to copy an image segment and pastes it within the same image to hide or duplicate a portion of the image. Several CMF detection techniques are available; however, better detection accuracy with low feature vector is always substantial. For this, differential excitation component (DEC) of Weber Law descriptor in combination with the gray level co-occurrence matrix (GLCM) approach of texture feature extraction for CMFD is proposed. GLCM Texture features are computed in four directions on DEC and this acts as a feature vector for support vector machine classifier. These texture features are more distinguishable and it is validated through other two proposed methods based on discrete wavelet transform-GLCM (DWT-GLCM) and GLCM. Experimentation is carried out on CoMoFoD and CASIA databases to validate the efficacy of proposed methods. Proposed methods exhibit resilience against many post-processing attacks. Comparative analysis with existing methods shows the superiority of the proposed method (DEC-GLCM) with regard to detection accuracy.


Sign in / Sign up

Export Citation Format

Share Document