scholarly journals Wheat Fusarium Head Blight Detection Using UAV-Based Spectral and Texture Features in Optimal Window Size

2021 ◽  
Vol 13 (13) ◽  
pp. 2437
Author(s):  
Yingxin Xiao ◽  
Yingying Dong ◽  
Wenjiang Huang ◽  
Linyi Liu ◽  
Huiqin Ma

By combining the spectral and texture features of images captured by unmanned aerial vehicles (UAVs), the accurate and timely detection of wheat Fusarium head blight (FHB) can be realized. This study presents a methodology to select the optimal window size of the gray-level co-occurrence matrix (GLCM) to extract texture features from UAV images for FHB detection. Host conditions and the disease distribution were combined to construct the model, and its overall accuracy, sensitivity, and generalization ability were evaluated. First, the sensitive spectral features and bands of the UAV-derived hyperspectral images were obtained, and then texture features were selected. Subsequently, spectral features and texture features extracted from windows of different sizes were input to classify the area of severe FHB. According to the model comparison, the optimal window size was obtained. With the collinearity between features eliminated, the best performance of the logistic model reached, with an accuracy, F1 score, and area under the receiver operating characteristic curve of 0.90, 0.79, and 0.79, respectively, when the window size of the GLCM was 5×5 pixels on May 3, and of 0.90, 0.83, and 0.82, respectively, when the size was 17×17 pixels on May 8. The results showed that the selection of an appropriate GLCM window size for texture feature extraction enabled more accurate disease detection.

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2887 ◽  
Author(s):  
Linsheng Huang ◽  
Taikun Li ◽  
Chuanlong Ding ◽  
Jinling Zhao ◽  
Dongyan Zhang ◽  
...  

Fusarium head blight (FHB), one of the most prevalent and damaging infection diseases of wheat, affects quality and safety of associated food. In this study, to realize the early accurate monitoring of FHB, a diagnostic model of disease severity was proposed based on the fusion features of image and spectral features. First, the hyperspectral image of FHB infected in the range of the 400–1000 nm spectrum was collected, and the color parameters of wheat ear and spot region were segmented based on image features. Twelve sensitive bands were extracted using the successive projection algorithm, gray-scale co-occurrence matrix, and RGB color model. Four texture features were extracted from each feature band image as texture variables, and nine color feature variables were extracted from R, G, and B component images. Texture features with high correlation and color features were selected to participate in the final model building parameters via correlation analysis. Finally, the particle swarm optimization support vector machine (PSO-SVM) algorithm was used to build the model based on the diagnosis model of disease severity of FHB with different combinations of characteristic variables. The experimental results showed that the PSO-SVM model based on spectral and color feature fusion was optimal. Moreover, the accuracy of the training and prediction set was 95% and 92%, respectively. The method based on fusion features of image and spectral features can accurately and effectively diagnose the severity of FHB, thereby providing a technical basis for the timely and effective control of FHB and precise application of a pesticide.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi142-vi142
Author(s):  
Kaylie Cullison ◽  
Garrett Simpson ◽  
Danilo Maziero ◽  
Kolton Jones ◽  
Radka Stoyanova ◽  
...  

Abstract A dilemma in treating glioblastoma is that MRI after chemotherapy and radiation therapy (chemoRT) shows areas of presumed tumor growth in up to 50% of patients. These areas can represent true progression (TP), tumor growth with tumors non-responsive to treatment, or pseudoprogression (PP), edema and tumor necrosis with favorable treatment response. On imaging, TP and PP are usually not discernable. Patients in this study undergo six weeks of chemoRT on a combination MRI/RT device, receiving daily MRIs. The goal of this study is to explore the correlation of radiomics features with progression. The tumor lesion and surrounding areas of growth/edema were manually outlined as regions of interest (ROIs) for each daily T2-weighted MRI scan. The ROIs were used to calculate texture features: statistical features based on the gray-level co-occurrence matrix (GLCM), the gray-level zone size matrix (GLZSM), the gray-level run length matrix (GLRLM), and the neighborhood gray-tone difference matrix (NGTDM). Each of these matrix classes describe the probability of spatial relationships of gray levels occurring within the ROI. Daily texture features were averaged per week of treatment for each patient. Patient response was retrospectively defined as no progression (NP), TP, or PP. A Kruskal-Wallis test was performed to identify texture features that correlated most strongly with patient response. Forty texture features were calculated for 12 patients (19 treated, 7 excluded due to no T2 lesion or progression status unknown, 6 NP, 3 TP, 3 PP). There was a trend of more texture features correlating significantly with response in weeks 4-6 of treatment, compared to weeks 1-3. A particular texture feature, GLSZM Small Zone Low Gray-Level Emphasis, showed increasing difference between PP and TP over time, with significant difference during week 6 of treatment (p=0.0495). Future directions include correlating early outcomes with greater numbers of patients and daily multiparametric MRI.


2020 ◽  
Vol 12 (3) ◽  
pp. 27-44
Author(s):  
Gulivindala Suresh ◽  
Chanamallu Srinivasa Rao

Copy-move forgery (CMF) is an established process to copy an image segment and pastes it within the same image to hide or duplicate a portion of the image. Several CMF detection techniques are available; however, better detection accuracy with low feature vector is always substantial. For this, differential excitation component (DEC) of Weber Law descriptor in combination with the gray level co-occurrence matrix (GLCM) approach of texture feature extraction for CMFD is proposed. GLCM Texture features are computed in four directions on DEC and this acts as a feature vector for support vector machine classifier. These texture features are more distinguishable and it is validated through other two proposed methods based on discrete wavelet transform-GLCM (DWT-GLCM) and GLCM. Experimentation is carried out on CoMoFoD and CASIA databases to validate the efficacy of proposed methods. Proposed methods exhibit resilience against many post-processing attacks. Comparative analysis with existing methods shows the superiority of the proposed method (DEC-GLCM) with regard to detection accuracy.


Author(s):  
Ann Nosseir ◽  
Seif Eldin A. Ahmed

Having a system that classifies different types of fruits and identifies the quality of fruits will be of a value in various areas especially in an area of mass production of fruits’ products. This paper presents a novel system that differentiates between four fruits types and identifies the decayed ones from the fresh. The algorithms used are based on the colour and the texture features of the fruits’ images. The algorithms extract the RGB values and the first statistical order and second statistical of the Gray Level Co-occurrence Matrix (GLCM) values. To segregate between the fruits’ types, Fine, Medium, Coarse, Cosine, Cubic, and Weighted K-Nearest Neighbors algorithms are applied. The accuracy percentages of each are 96.3%, 93.8%, 25%, 83.8%, 90%, and 95% respectively.  These steps are tested with 46 pictures taken from a mobile phone of seasonal fruits at the time i.e., banana, apple, and strawberry. All types were accurately identifying.  To tell apart the decayed fruits from the fresh, the linear and quadratic Support Vector Machine (SVM) algorithms differentiated between them based on the colour segmentation and the texture feature algorithms values of each fruit image. The accuracy of the linear SVM is 96% and quadratic SVM 98%.


2019 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Candra Dewi ◽  
Suci Sundari ◽  
Mardji Mardji

Patchouli (Pogostemon Cablin Bent) has higher PA (Patchouli Alcohol) and oil production if grown in soil containing 75% organic matter. One way that can be used to detect the content of organic matter is to use soil images. The problem in the use of soil images is the color of the soil that is almost similar, namely the gradation between dark brown to black. Therefore, color features are not enough to be used as input in the recognition process. For this purposes, texture features are added in this study in addition to color features. The color features are extracted using color moment and the texture features are extracted using Gray Level Co-occurrence Matrix (GLCM). These feature was then chosen to get the best combination as input in the identification process using the Backpropagation Neural Network (BPNN). The system identifies the quantity of soil organic matter into five classes, namely very low, low, medium, high, and very high. The highest accuracy result obtained was 73% and MSE value 0.5122 by using five GLCM features (Angular Second Moment, contrast, correlation, Inverse Difference Moment, and entropy). This result was obtained by using the BPNN parameter, namely learning rate values 0.5, maximum iteration values of 1000, number training data 210, and total test data 12.


2021 ◽  
Vol 35 (3) ◽  
pp. 201-207
Author(s):  
Halaguru Basavarajappa Basanth Kumar ◽  
Haranahalli Rajanna Chennamma

With the rapid advancement in digital image rendering techniques, allows the user to create surrealistic computer graphic (CG) images which are hard to distinguish from photographs captured by digital cameras. In this paper, classification of CG images and photographic (PG) images based on fusion of global features is presented. Color and texture of an image represents global features. Texture feature descriptors such as gray level co-occurrence matrix (GLCM) and local binary pattern (LBP) are considered. Different combinations of these global features are investigated on various datasets. Experimental results show that, fusion of color and texture features subset can achieve best classification results over other feature combinations.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 998
Author(s):  
Linsheng Huang ◽  
Kang Wu ◽  
Wenjiang Huang ◽  
Yingying Dong ◽  
Huiqin Ma ◽  
...  

Fusarium head blight, caused by a fungus, can cause quality deterioration and severe yield loss in wheat. It produces highly toxic deoxynivalenol, which is harmful to human and animal health. In order to quickly and accurately detect the severity of fusarium head blight, a method of detecting the disease using continuous wavelet analysis and particle swarm optimization support vector machines (PSO-SVM) is proposed in this paper. First, seven wavelet features for fusarium head blight detection were extracted using continuous wavelet analysis based on the hyperspectral reflectance of wheat ears. In addition, 16 traditional spectral features were selected using correlation analysis, including two continuous removal transformed spectral features, six differential spectral features, and eight vegetation indices. Finally, wavelet features and traditional spectral features were used as input features to construct fusarium head blight detection models in combination with the PSO-SVM algorithm, and the results were compared with those obtained using random forest (RF) and a back propagation neural network (BPNN). The results show that, under the same feature variables, the PSO-SVM detection method gave an overall higher accuracy than the BPNN detection method, while the overall accuracy of the RF detection model was the lowest. The overall accuracy of the RF, BPNN and PSO-SVM detection models with wavelet features was higher by 3.7%, 2.9% and 8.3% compared to the corresponding methodological models with traditional spectral features. The detection model with wavelet features combining the PSO-SVM algorithm gave the highest overall accuracies (93.5%) and kappa coefficients (0.903) in the six monitoring models. These results suggest that the PSO-SVM algorithm combined with continuous wavelet analysis can significantly improve the accuracy of fusarium head blight detection on the wheat ears scale.


2019 ◽  
Vol 90 (7-8) ◽  
pp. 776-796 ◽  
Author(s):  
Feng Li ◽  
Lina Yuan ◽  
Kun Zhang ◽  
Wenqing Li

A new texture-feature description operator, called the multidirectional binary patterns (MDBP) operator, is proposed in this paper. The operator can extract the detailed distribution of textures in local regions by comparing the differences in the gray levels between neighboring pixels. Moreover, the texture expression ability is enhanced by focusing on the texture features in the linear neighborhood of the image in multiple directions. The MDBP operator was modified by introducing a “uniform” pattern to reduce the grayscale values in the image. Combining the “uniform” MDBP operator and the gray-level co-occurrence matrix, an unpatterned fabric-defect detection scheme is proposed, including texture-feature extraction and detection stages. In the first stage, the multidirectional texture-feature matrix of a nondefective fabric image is extracted, and then the detection threshold is determined based on the similarity between the feature matrices. In the second stage, the defect is detected with the detection threshold. The proposed method is adapted to various grayscale textile images with different characteristics and is robust to a wide variety of image-processing operations. In addition, it is invariant to grayscale changes, performs well when representing textures and detecting defects and has lower computational complexity than other methods.


2012 ◽  
Vol 610-613 ◽  
pp. 3606-3611
Author(s):  
Ling Ling Zhang ◽  
Ge Ying Lai ◽  
Xiang Gui Zeng ◽  
Fa Zhao Yi

According to the problem that the classification result of shrub and forest land was easy to confuse when used spectrum of Advanced Land Image (ALI) to classify. This paper used the Meijiang River watershed as the study area. Used the Principal Component Analysis (PCA) to reduce dimension, taken the Contrast, Second moment, Mean and Dissimilarity as the texture values, and extracted the texture by Gray level co-occurrence matrix (GLCM). The texture features extracted from different window sizes were used the Maximum likelihood method to classify, and chosen the texture features extracted by the most suitable window size to join the classification. The research result shows that the texture features extracted by window size of 11×11 can distinguish well the two easily ground objects; moreover, the overall accuracy of classification used texture and spectrum features reached to 87.55%, which is 4.4% higher than the classification with spectrum.


2020 ◽  
Vol 12 (14) ◽  
pp. 2261 ◽  
Author(s):  
Yinghui Quan ◽  
Xian Zhong ◽  
Wei Feng ◽  
Gabriel Dauphin ◽  
Lianru Gao ◽  
...  

Remote sensing images classification is the key technology for monitoring forest changes. Texture features have been demonstrated to have better effectiveness than spectral features in the improvement of the classification accuracy. The accuracy of extracting texture information by window-based method depends on the choice of the window size. Moreover, the size should ideally match the spatial scale of the object or class under consideration. However, most of the existing texture feature extraction methods are all based on a single window and do not adequately consider the scale of different objects. Our first proposition is to use a composite window for extracting texture features, which is a small window surrounded by a larger window. Our second proposition is to reinforce the performance of the trained ensemble classifier by training it using only the most important features. Considering the advantages of random forest classifier, such as fast training speed and few parameters, these features feed this classifier. Measures of feature importance are estimated along with the growth of the base classifiers, here decision trees. We aim to classify each pixel of the forest images disturbed by hurricanes and fires in three classes, damaged, not damaged, or unknown, as this could be used to compute time-dependent aggregates. In this study, two research areas—Nezer Forest in France and Blue Mountain Forest in Australia—are utilized to validating the effectiveness of the proposed method. Numerical simulations show increased performance and improved monitoring ability of forest disturbance when using these two propositions. When compared with the reference methods, the best increase of the overall accuracy obtained by the proposed algorithm is 4.77% and 2.96% on the Nezer forest data and Blue Mountain forest data, respectively.


Sign in / Sign up

Export Citation Format

Share Document