scholarly journals Vegetation Detection Using Deep Learning and Conventional Methods

2020 ◽  
Vol 12 (15) ◽  
pp. 2502 ◽  
Author(s):  
Bulent Ayhan ◽  
Chiman Kwan ◽  
Bence Budavari ◽  
Liyun Kwan ◽  
Yan Lu ◽  
...  

Land cover classification with the focus on chlorophyll-rich vegetation detection plays an important role in urban growth monitoring and planning, autonomous navigation, drone mapping, biodiversity conservation, etc. Conventional approaches usually apply the normalized difference vegetation index (NDVI) for vegetation detection. In this paper, we investigate the performance of deep learning and conventional methods for vegetation detection. Two deep learning methods, DeepLabV3+ and our customized convolutional neural network (CNN) were evaluated with respect to their detection performance when training and testing datasets originated from different geographical sites with different image resolutions. A novel object-based vegetation detection approach, which utilizes NDVI, computer vision, and machine learning (ML) techniques, is also proposed. The vegetation detection methods were applied to high-resolution airborne color images which consist of RGB and near-infrared (NIR) bands. RGB color images alone were also used with the two deep learning methods to examine their detection performances without the NIR band. The detection performances of the deep learning methods with respect to the object-based detection approach are discussed and sample images from the datasets are used for demonstrations.

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2764
Author(s):  
Xin Yu Liew ◽  
Nazia Hameed ◽  
Jeremie Clos

A computer-aided diagnosis (CAD) expert system is a powerful tool to efficiently assist a pathologist in achieving an early diagnosis of breast cancer. This process identifies the presence of cancer in breast tissue samples and the distinct type of cancer stages. In a standard CAD system, the main process involves image pre-processing, segmentation, feature extraction, feature selection, classification, and performance evaluation. In this review paper, we reviewed the existing state-of-the-art machine learning approaches applied at each stage involving conventional methods and deep learning methods, the comparisons within methods, and we provide technical details with advantages and disadvantages. The aims are to investigate the impact of CAD systems using histopathology images, investigate deep learning methods that outperform conventional methods, and provide a summary for future researchers to analyse and improve the existing techniques used. Lastly, we will discuss the research gaps of existing machine learning approaches for implementation and propose future direction guidelines for upcoming researchers.


Author(s):  
Mohammadreza Hajiarbabi ◽  
Arvin Agah

Human skin detection is an important and challenging problem in computer vision. Skin detection can be used as the first phase in face detection when using color images. The differences in illumination and ranges of skin colors have made skin detection a challenging task. Gaussian model, rule based methods, and artificial neural networks are methods that have been used for human skin color detection. Deep learning methods are new techniques in learning that have shown improved classification power compared to neural networks. In this paper the authors use deep learning methods in order to enhance the capabilities of skin detection algorithms. Several experiments have been performed using auto encoders and different color spaces. The proposed technique is evaluated compare with other available methods in this domain using two color image databases. The results show that skin detection utilizing deep learning has better results compared to other methods such as rule-based, Gaussian model and feed forward neural network.


2015 ◽  
Vol 8 (2) ◽  
pp. 327-335 ◽  
Author(s):  
Daniel Hölbling ◽  
Barbara Friedl ◽  
Clemens Eisank

Abstract Earth observation (EO) data are very useful for the detection of landslides after triggering events, especially if they occur in remote and hardly accessible terrain. To fully exploit the potential of the wide range of existing remote sensing data, innovative and reliable landslide (change) detection methods are needed. Recently, object-based image analysis (OBIA) has been employed for EO-based landslide (change) mapping. The proposed object-based approach has been tested for a sub-area of the Baichi catchment in northern Taiwan. The focus is on the mapping of landslides and debris flows/sediment transport areas caused by the Typhoons Aere in 2004 and Matsa in 2005. For both events, pre- and post-disaster optical satellite images (SPOT-5 with 2.5 m spatial resolution) were analysed. A Digital Elevation Model (DEM) with 5 m spatial resolution and its derived products, i.e., slope and curvature, were additionally integrated in the analysis to support the semi-automated object-based landslide mapping. Changes were identified by comparing the normalised values of the Normalized Difference Vegetation Index (NDVI) and the Green Normalized Difference Vegetation Index (GNDVI) of segmentation-derived image objects between pre- and post-event images and attributed to landslide classes.


Object detection in videos is gaining more attention recently as it is related to video analytics and facilitates image understanding and applicable to . The video object detection methods can be divided into traditional and deep learning based methods. Trajectory classification, low rank sparse matrix, background subtraction and object tracking are considered as traditional object detection methods as they primary focus is informative feature collection, region selection and classification. The deep learning methods are more popular now days as they facilitate high-level features and problem solving in object detection algorithms. We have discussed various object detection methods and challenges in this paper.


2020 ◽  
pp. 1310-1322
Author(s):  
Mohammadreza Hajiarbabi ◽  
Arvin Agah

Human skin detection is an important and challenging problem in computer vision. Skin detection can be used as the first phase in face detection when using color images. The differences in illumination and ranges of skin colors have made skin detection a challenging task. Gaussian model, rule based methods, and artificial neural networks are methods that have been used for human skin color detection. Deep learning methods are new techniques in learning that have shown improved classification power compared to neural networks. In this paper the authors use deep learning methods in order to enhance the capabilities of skin detection algorithms. Several experiments have been performed using auto encoders and different color spaces. The proposed technique is evaluated compare with other available methods in this domain using two color image databases. The results show that skin detection utilizing deep learning has better results compared to other methods such as rule-based, Gaussian model and feed forward neural network.


2020 ◽  
Vol 2020 (14) ◽  
pp. 377-1-377-7
Author(s):  
Bruno Artacho ◽  
Nilesh Pandey ◽  
Andreas Savakis

Monocular depth estimation is an important task in scene understanding with applications to pose, segmentation and autonomous navigation. Deep Learning methods relying on multilevel features are currently used for extracting local information that is used to infer depth from a single RGB image. We present an efficient architecture that utilizes the features from multiple levels with fewer connections compared to previous networks. Our model achieves comparable scores for monocular depth estimation with better efficiency on the memory requirements and computational burden.


2020 ◽  
Vol 12 (3) ◽  
pp. 346 ◽  
Author(s):  
Nikhil Prakash ◽  
Andrea Manconi ◽  
Simon Loew

Mapping landslides using automated methods is a challenging task, which is still largely done using human efforts. Today, the availability of high-resolution EO data products is increasing exponentially, and one of the targets is to exploit this data source for the rapid generation of landslide inventory. Conventional methods like pixel-based and object-based machine learning strategies have been studied extensively in the last decade. In addition, recent advances in CNN (convolutional neural network), a type of deep-learning method, has been widely successful in extracting information from images and have outperformed other conventional learning methods. In the last few years, there have been only a few attempts to adapt CNN for landslide mapping. In this study, we introduce a modified U-Net model for semantic segmentation of landslides at a regional scale from EO data using ResNet34 blocks for feature extraction. We also compare this with conventional pixel-based and object-based methods. The experiment was done in Douglas County, a study area selected in the south of Portland in Oregon, USA, and landslide inventory extracted from SLIDO (Statewide Landslide Information Database of Oregon) was considered as the ground truth. Landslide mapping is an imbalanced learning problem with very limited availability of training data. Our network was trained on a combination of focal Tversky loss and cross-entropy loss functions using augmented image tiles sampled from a selected training area. The deep-learning method was observed to have a better performance than the conventional methods with an MCC (Matthews correlation coefficient) score of 0.495 and a POD (probability of detection) rate of 0.72 .


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiang Song ◽  
Weiqin Zhan ◽  
Xiaoyu Che ◽  
Huilin Jiang ◽  
Biao Yang

Three-dimensional object detection can provide precise positions of objects, which can be beneficial to many robotics applications, such as self-driving cars, housekeeping robots, and autonomous navigation. In this work, we focus on accurate object detection in 3D point clouds and propose a new detection pipeline called scale-aware attention-based PillarsNet (SAPN). SAPN is a one-stage 3D object detection approach similar to PointPillar. However, SAPN achieves better performance than PointPillar by introducing the following strategies. First, we extract multiresolution pillar-level features from the point clouds to make the detection approach more scale-aware. Second, a spatial-attention mechanism is used to highlight the object activations in the feature maps, which can improve detection performance. Finally, SE-attention is employed to reweight the features fed into the detection head, which performs 3D object detection in a multitask learning manner. Experiments on the KITTI benchmark show that SAPN achieved similar or better performance compared with several state-of-the-art LiDAR-based 3D detection methods. The ablation study reveals the effectiveness of each proposed strategy. Furthermore, strategies used in this work can be embedded easily into other LiDAR-based 3D detection approaches, which improve their detection performance with slight modifications.


Author(s):  
Danial Mirza Muammar Rozilan ◽  
Marsyita Hanafi ◽  
Roslizah Ali ◽  
Mohd Adib Razak ◽  
Cui Hairu

Automatic plant growth monitoring has received considerable attention in recent years. The demand in this field has created various opportunities, especially for automatic classification using deep learning methods. In this paper, the efficiency of deep learning algorithms in classifying the growth stage of chili plants is studied. Chili is one of the high cash value crops, and automatic identification of chili plant growth stages is essential for crop productivity. Nevertheless, the study on automatic chili plant growth stage classification using deep learning approaches is not widely explored, and this is due to the unavailability of public datasets on the chili plant growth stages. Various deep learning methods, namely Inception V3, ResNet50, and VGG16, were used in the study, and the results have shown that these methods performed well in terms of accuracy and stability when tested on a dataset that consists of 2,320 images of Capsicum annum 'Bird's Eye' plants of various growth stages and imaging conditions. Nevertheless, the results have also shown that the deep learning methods have difficulty classifying images with a complex background where more than one chili plant was captured in an image.


Sign in / Sign up

Export Citation Format

Share Document