scholarly journals Estimation of Organic Carbon in Anthropogenic Soil by VIS-NIR Spectroscopy: Effect of Variable Selection

2020 ◽  
Vol 12 (20) ◽  
pp. 3394
Author(s):  
Lu Xu ◽  
Yongsheng Hong ◽  
Yu Wei ◽  
Long Guo ◽  
Tiezhu Shi ◽  
...  

Visible and near-infrared reflectance (VIS-NIR) spectroscopy is widely applied to estimate soil organic carbon (SOC). Intense and diverse human activities increase the heterogeneity in the relationships between SOC and VIS-NIR spectra in anthropogenic soil. This fact results in poor performance of SOC estimation models. To improve model accuracy and parsimony, we investigated the performance of two variable selection algorithms, namely competitive adaptive reweighted sampling (CARS) and random frog (RF), coupled with five spectral pretreatments. A total of 108 samples were collected from Jianghan Plain, China, with the SOC content and VIS-NIR spectra measured in the laboratory. Results showed that both CARS and RF coupled with partial least squares regression (PLSR) outperformed PLSR alone in terms of higher model accuracy and less spectral variables. It revealed that spectral variable selection could identify important spectral variables that account for the relationships between SOC and VIS-NIR spectra, thereby improving the accuracy and parsimony of PLSR models in anthropogenic soil. Our findings are of significant practical value to the SOC estimation in anthropogenic soil by VIS-NIR spectroscopy.

2021 ◽  
Author(s):  
Hayfa Zayani ◽  
Youssef Fouad ◽  
Didier Michot ◽  
Zeineb Kassouk ◽  
Zohra Lili-Chabaane ◽  
...  

<p>Visible-Near Infrared (Vis-NIR) spectroscopy has proven its efficiency in predicting several soil properties such as soil organic carbon (SOC) content. In this preliminary study, we explored the ability of Vis-NIR to assess the temporal evolution of SOC content. Soil samples were collected in a watershed (ORE AgrHys), located in Brittany (Western France). Two sampling campaigns were carried out 5 years apart: in 2013, 198 soil samples were collected respectively at two depths (0-15 and 15-25 cm) over an area of 1200 ha including different land use and land cover; in 2018, 111 sampling points out of 198 of 2013 were selected and soil samples were collected from the same two depths. Whole samples were analyzed for their SOC content and were scanned for their reflectance spectrum. Spectral information was acquired from samples sieved at 2 mm fraction and oven dried at 40°C, 24h prior to spectra acquisition, with a full range Vis-NIR spectroradiometer ASD Fieldspec®3. Data set of 2013 was used to calibrate the SOC content prediction model by the mean of Partial Least Squares Regression (PLSR). Data set of 2018 was therefore used as test set. Our results showed that the variation ∆SOC<sub>obs</sub><sub></sub>obtained from observed values in 2013 and 2018 (∆SOC<sub>obs</sub> = Observed SOC (2018) - Observed SOC (2013)) is ranging from 0.1 to 25.9 g/kg. Moreover, our results showed that the prediction performance of the calibrated model was improved by including 11 spectra of 2018 in the 2013 calibration data set (R²= 0.87, RMSE = 5.1 g/kg and RPD = 1.92). Furthermore, the comparison of predicted and observed ∆SOC between 2018 and 2013 showed that 69% of the variations were of the same sign, either positive or negative. For the remaining 31%, the variations were of opposite signs but concerned mainly samples for which ∆SOCobs is less than 1,5 g/kg. These results reveal that Vis-NIR spectroscopy was potentially appropriate to detect variations of SOC content and are encouraging to further explore Vis-NIR spectroscopy to detect changes in soil carbon stocks.</p>


2016 ◽  
Vol 9 ◽  
pp. ASWR.S40173 ◽  
Author(s):  
Sakda Homhuan ◽  
Wanwisa Pansak ◽  
Siam Lawawirojwong ◽  
Chada Narongrit

Visible and near-infrared spectroscopy is a rapid, less expensive, and nondestructive alternative to conventional methods of soil analysis. This study aimed to investigate appropriate soil sample preparations and particle sizes for estimating soil organic carbon (SOC) through the use of laboratory spectroscopy. Rainfed paddy soils were sampled from 240 sampling sites to record their spectral reflectance and to measure their SOC contents in the laboratory. Partial least squares regression was applied to select the best model to estimate SOC using soil spectra. The results showed that the highest accuracy of SOC estimation was gained from soil samples prepared by 2 mm sieving. A short-wave infrared region was the most appropriate spectral wavelength for SOC estimation of rainfed paddy soil. Although the model showed potential in SOC prediction, the accuracy of partial least squares regression prediction in each spectral region varied between sampling times. Therefore, these models and methods should be further tested in soils sampled from different seasons and other regions to prove consistent validity. However, these results are useful for wavelength selection and soil sample preparation in future laboratory spectroscopy.


2016 ◽  
Vol 24 (6) ◽  
pp. 537-548 ◽  
Author(s):  
Chengfeng Zhou ◽  
Wei Jiang ◽  
Brian K. Via ◽  
P.M. Chetty ◽  
Tammy Swain

Determination of wood chemical components such as extrac tives, lignin and car bohydrate content by conventional wet chemistry is time consuming and sometimes hazardous. Near infrared reflectance (NIR) spectroscopy coupled with multivariate calibration was utilised to offer a fast alternative to wet chemistry methods. In this study, 70 Eucalyptus dunnii wood samples were collected to investigate the correlation and modelling potential of using NIR spectra to predict extractives, lignin, carbohydrate content and ash which were determined with classical methods (extractives, ash and lignin) and high-performance liquid chromatography (sugars). Partial least squares regression was used for multivariate calibration. An evaluation of the results found that ash, extractives and lignin could be predicted with the strongest prediction diagnostics while mannose and glucose-to-mannose ratio models exhibited the lowest performance. The robust ability to predict glucose-to-xylose ratio ( r2 = 0.87) provided a unique way to utilise NIR to monitor biomass quality and could be helpful for the improvement of ethanol and other forest products. The large range in glucose-to-xylose ratio (2.0 to 4.0), as determined through NIR, suggests that using xylose content to estimate total hemicellulose content may be unsuitable, though this type of ratio assumption and analysis is common for softwoods.


2011 ◽  
Vol 49 (No. 5) ◽  
pp. 177-182 ◽  
Author(s):  
S. Kráčmar ◽  
R. Jankovská ◽  
K. Šustová ◽  
J. Kuchtík ◽  
L. Zeman

This paper deals with changes in the basic composition of sheep colostrum within the first 72 hours after parturition on the one hand and with the possibility of determining the major components of sheep colostrum by near-infrared spectroscopy on the other. Levels of essential, nonessential and total amino acids in sheep colostrum were determined by near-infrared reflectance spectroscopy (NIRS). ). For each component, sets of 90 samples were used to calibrate the instrument by means of a modified partial least-squares regression. The values of correlation coefficients (r) were as follows: 0.979 for Thr; 0.954 for Val; 0.968 for Leu; 0.918 for Ile; 0.946 for Lys; 0.908 for Arg; 0.845 for His; 0.999 for Trp; 0.915 for Phe; 0.909 for Met; 0.939 for Cys; 0.911 for Σmet + Cys; 0.933 for Tyr; 0.945 for Asp; 0.935 for Glu; 0.986 for Ser; 0.985 for Pro; 0.957 for Gly; 0.949 for Ala; 0.940 for ΣEAA; 0.958 for ΣNEAA and 0.977 for ΣAA. Partial least-squares (PLS) regression was used to develop calibration models for examined samples of sheep colostrum. When using the NIRS method, the following correlation coefficients were calculated: Thr (0.959), Val (0.912), Leu (0.936), Ile (0.855), Lys (0.903), Arg (0.853), His (0.717), Trp (0.667), Phe (0.854), Met (0.867), Cys (0.895), Σmet + Cys (0.868), Tyr (0.886), Asp (0.910), Glu (0.882), Ser (0.968), Pro (0.968), Gly (0.923), Ala (0.916), ΣEAA (0.901), ΣNEAA (0.923) and ΣAA (0.943). Calibration was tested using the same set of samples.NIRS results were compared with reference data and no significant differences between them were found (P = 0.05). Calibration and validation models were constructed in the same way.Results of this study indicate that NIR spectroscopy can be used for a rapid analysis of amino acid contents in sheep colostrum.  


2002 ◽  
Vol 10 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Mulualem Tigabu ◽  
Per Christer Odén

Near infrared (NIR) spectroscopy was used to classify insect-infested and sound seeds of a tropical multipurpose tree, Cordia africana Lam. A calibration model derived by partial least squares regression of orthogonal signal corrected spectra resulted in a 100% classification rate. Difference spectrum and partial least squares weight indicated that absorbance differences between insect-infested and sound seeds might have been due to differences in composition of chitin and cuticular lipid components as well as moisture content. The result shows the possibility of using NIR spectroscopy in the seed cleaning process in the future provided that appropriate sorting instruments are developed.


1998 ◽  
Vol 6 (1) ◽  
pp. 229-234 ◽  
Author(s):  
William R. Windham ◽  
W.H. Morrison

Near infrared (NIR) spectroscopy in the prediction of individual and total fatty acids of bovine M. Longissimus dorsi neck muscles has been studied. Beef neck lean was collected from meat processing establishments using advanced meat recovery systems and hand-deboning. Samples ( n = 302) were analysed to determine fatty acid (FA) composition and scanned from 400 to 2498 nm. Total saturated and unsaturated FA values ranged from 43.2 to 62.0% and 38.3 to 56.2%, respectively. Results of partial least squares (PLS) modeling shown reasonably accurate models were attained for total saturate content [standard error of performance ( SEP = 1.10%); coefficient of determination on the validation set ( r2 = 0.77)], palmitic ( SEP = 0.94%; r2 = 0.69), unsaturate ( SEP = 1.13%; r2 = 0.77), and oleic ( SEP = 0.97; r2 = 0.78). Prediction of other individual saturated and unsaturated FAs was less accurate with an r2 range of 0.10 to 0.53. However, the sum of individual predicted saturated and unsaturated FA was acceptable compared with the reference method ( SEP = 1.10 and 1.12%, respectively). This study shows that NIR can be used to predict accurately total fatty acids in M. Longissimus dorsi muscle.


2021 ◽  
Author(s):  
Iva Hrelja ◽  
Ivana Šestak ◽  
Igor Bogunović

<p>Spectral data obtained from optical spaceborne sensors are being recognized as a valuable source of data that show promising results in assessing soil properties on medium and macro scale. Combining this technique with laboratory Visible-Near Infrared (VIS-NIR) spectroscopy methods can be an effective approach to perform robust research on plot scale to determine wildfire impact on soil organic matter (SOM) immediately after the fire. Therefore, the objective of this study was to assess the ability of Sentinel-2 superspectral data in estimating post-fire SOM content and comparison with the results acquired with laboratory VIS-NIR spectroscopy.</p><p>The study is performed in Mediterranean Croatia (44° 05’ N; 15° 22’ E; 72 m a.s.l.), on approximately 15 ha of fire affected mixed <em>Quercus ssp.</em> and <em>Juniperus ssp.</em> forest on Cambisols. A total of 80 soil samples (0-5 cm depth) were collected and geolocated on August 22<sup>nd</sup> 2019, two days after a medium to high severity wildfire. The samples were taken to the laboratory where soil organic carbon (SOC) content was determined via dry combustion method with a CHNS analyzer. SOM was subsequently calculated by using a conversion factor of 1.724. Laboratory soil spectral measurements were carried out using a portable spectroradiometer (350-1050 nm) on all collected soil samples. Two Sentinel-2 images were downloaded from ESAs Scientific Open Access Hub according to the closest dates of field sampling, namely August 31<sup>st</sup> and September 5<sup>th </sup>2019, each containing eight VIS-NIR and two SWIR (Short-Wave Infrared) bands which were extracted from bare soil pixels using SNAP software. Partial least squares regression (PLSR) model based on the pre-processed spectral data was used for SOM estimation on both datasets. Spectral reflectance data were used as predictors and SOM content was used as a response variable. The accuracy of the models was determined via Root Mean Squared Error of Prediction (RMSE<sub>p</sub>) and Ratio of Performance to Deviation (RPD) after full cross-validation of the calibration datasets.</p><p>The average post-fire SOM content was 9.63%, ranging from 5.46% minimum to 23.89% maximum. Models obtained from both datasets showed low RMSE<sub>p </sub>(Spectroscopy dataset RMSE<sub>p</sub> = 1.91; Sentinel-2 dataset RMSE<sub>p</sub> = 0.99). RPD values indicated very good predictions for both datasets (Spectrospcopy dataset RPD = 2.72; Sentinel-2 dataset RPD = 2.22). Laboratory spectroscopy method with higher spectral resolution provided more accurate results. Nonetheless, spaceborne method also showed promising results in the analysis and monitoring of SOM in post-burn period.</p><p><strong>Keywords:</strong> remote sensing, soil spectroscopy, wildfires, soil organic matter</p><p><strong>Acknowledgment: </strong>This work was supported by the Croatian Science Foundation through the project "Soil erosion and degradation in Croatia" (UIP-2017-05-7834) (SEDCRO). Aleksandra Perčin is acknowledged for her cooperation during the laboratory work.</p>


2014 ◽  
Vol 7 (3) ◽  
pp. 1197-1210 ◽  
Author(s):  
M. Nussbaum ◽  
A. Papritz ◽  
A. Baltensweiler ◽  
L. Walthert

Abstract. Accurate estimates of soil organic carbon (SOC) stocks are required to quantify carbon sources and sinks caused by land use change at national scale. This study presents a novel robust kriging method to precisely estimate regional and national mean SOC stocks, along with truthful standard errors. We used this new approach to estimate mean forest SOC stock for Switzerland and for its five main ecoregions. Using data of 1033 forest soil profiles, we modelled stocks of two compartments (0–30, 0–100 cm depth) of mineral soils. Log-normal regression models that accounted for correlation between SOC stocks and environmental covariates and residual (spatial) auto-correlation were fitted by a newly developed robust restricted maximum likelihood method, which is insensitive to outliers in the data. Precipitation, near-infrared reflectance, topographic and aggregated information of a soil and a geotechnical map were retained in the models. Both models showed weak but significant residual autocorrelation. The predictive power of the fitted models, evaluated by comparing predictions with independent data of 175 soil profiles, was moderate (robust R2 = 0.34 for SOC stock in 0–30 cm and R2 = 0.40 in 0–100 cm). Prediction standard errors (SE), validated by comparing point prediction intervals with data, proved to be conservative. Using the fitted models, we mapped forest SOC stock by robust external-drift point kriging at high resolution across Switzerland. Predicted mean stocks in 0–30 and 0–100 cm depth were equal to 7.99 kg m−2 (SE 0.15 kg m−2) and 12.58 kg m−2 (SE 0.24 kg m−2), respectively. Hence, topsoils store about 64% of SOC stocks down to 100 cm depth. Previous studies underestimated SOC stocks of topsoil slightly and those of subsoils strongly. The comparison further revealed that our estimates have substantially smaller SE than previous estimates.


Sign in / Sign up

Export Citation Format

Share Document