scholarly journals Model Selection in Atmospheric Remote Sensing with Application to Aerosol Retrieval from DSCOVR/EPIC. Part 2: Numerical Analysis

2020 ◽  
Vol 12 (21) ◽  
pp. 3656
Author(s):  
Sruthy Sasi ◽  
Vijay Natraj ◽  
Víctor Molina García ◽  
Dmitry S. Efremenko ◽  
Diego Loyola ◽  
...  

An algorithm for retrieving aerosol parameters by taking into account the uncertainty in aerosol model selection is applied to the retrieval of aerosol optical thickness and aerosol layer height from synthetic measurements from the EPIC sensor onboard the Deep Space Climate Observatory. The synthetic measurements are generated using aerosol models derived from AERONET measurements at different sites, while other commonly used aerosol models, such as OPAC, GOCART, OMI, and MODIS databases are used in the retrieval. The numerical analysis is focused on the estimation of retrieval errors when the true aerosol model is unknown. We found that the best aerosol model is the one with a value of the asymmetry parameter and an angular variation of the phase function around the viewing direction that is close to the values corresponding to the reference aerosol model.

2020 ◽  
Vol 12 (22) ◽  
pp. 3724
Author(s):  
Sruthy Sasi ◽  
Vijay Natraj ◽  
Víctor Molina García ◽  
Dmitry S. Efremenko ◽  
Diego Loyola ◽  
...  

The retrieval of aerosol and cloud properties such as their optical thickness and/or layer/top height requires the selection of a model that describes their microphysical properties. We demonstrate that, if there is not enough information for an appropriate microphysical model selection, the solution’s accuracy can be improved if the model uncertainty is taken into account and appropriately quantified. For this purpose, we design a retrieval algorithm accounting for the uncertainty in model selection. The algorithm is based on (i) the computation of each model solution using the iteratively regularized Gauss–Newton method, (ii) the linearization of the forward model around the solution, and (iii) the maximum marginal likelihood estimation and the generalized cross-validation to estimate the optimal model. The algorithm is applied to the retrieval of aerosol optical thickness and aerosol layer height from synthetic measurements corresponding to the Earth Polychromatic Imaging Camera (EPIC) instrument onboard the Deep Space Climate Observatory (DSCOVR) satellite. Our numerical simulations show that the heuristic approach based on the thesolution minimizing the residual, which is frequently used in literature, is completely unrealistic when both the aerosol model and surface albedo are unknown.


2019 ◽  
Vol 12 (1) ◽  
pp. 491-516 ◽  
Author(s):  
Julien Chimot ◽  
J. Pepijn Veefkind ◽  
Johan F. de Haan ◽  
Piet Stammes ◽  
Pieternel F. Levelt

Abstract. Global mapping of satellite tropospheric NO2 vertical column density (VCD), a key gas in air quality monitoring, requires accurate retrievals over complex urban and industrialized areas and under any atmospheric conditions. The high abundance of aerosol particles in regions dominated by anthropogenic fossil fuel combustion, e.g. megacities, and/or biomass-burning episodes, affects the space-borne spectral measurement. Minimizing the tropospheric NO2 VCD biases caused by aerosol scattering and absorption effects is one of the main retrieval challenges from air quality satellite instruments. In this study, the reference Ozone Monitoring Instrument (OMI) DOMINO-v2 product was reprocessed over cloud-free scenes, by applying new aerosol correction parameters retrieved from the 477 nm O2−O2 band, over eastern China and South America for 2 years (2006–2007). These new parameters are based on two different and separate algorithms developed during the last 2 years in view of an improved use of the OMI 477 nm O2−O2 band: the updated OMCLDO2 algorithm, which derives improved effective cloud parameters, the aerosol neural network (NN), which retrieves explicit aerosol parameters by assuming a more physical aerosol model. The OMI aerosol NN is a step ahead of OMCLDO2 because it primarily estimates an explicit aerosol layer height (ALH), and secondly an aerosol optical thickness τ for cloud-free observations. Overall, it was found that all the considered aerosol correction parameters reduce the biases identified in DOMINO-v2 over scenes in China with high aerosol abundance dominated by fine scattering and weakly absorbing particles, e.g. from [-20%:-40%] to [0 %:20 %] in summertime. The use of the retrieved OMI aerosol parameters leads in general to a more explicit aerosol correction and higher tropospheric NO2 VCD values, in the range of [0 %:40 %], than from the implicit correction with the updated OMCLDO2. This number overall represents an estimation of the aerosol correction strategy uncertainty nowadays for tropospheric NO2 VCD retrieval from space-borne visible measurements. The explicit aerosol correction theoretically includes a more realistic consideration of aerosol multiple scattering and absorption effects, especially over scenes dominated by strongly absorbing particles, where the correction based on OMCLDO2 seems to remain insufficient. However, the use of ALH and τ from the OMI NN aerosol algorithm is not a straightforward operation and future studies are required to identify the optimal methodology. For that purpose, several elements are recommended in this paper. Overall, we demonstrate the possibility of applying a more explicit aerosol correction by considering aerosol parameters directly derived from the 477 nm O2−O2 spectral band, measured by the same satellite instrument. Such an approach can, in theory, easily be transposed to the new-generation of space-borne instruments (e.g. TROPOMI on board Sentinel-5 Precursor), enabling a fast reprocessing of tropospheric NO2 data over cloud-free scenes (cloudy pixels need to be filtered out), as well as for other trace gas retrievals (e.g. SO2, HCHO).


2018 ◽  
Author(s):  
Julien Chimot ◽  
J. Pepijn Veefkind ◽  
Johan F. de Haan ◽  
Piet Stammes ◽  
Pieternel F. Levelt

Abstract. Global mapping of satellite tropospheric NO2 vertical column density (VCD), a key gas in air quality monitoring, requires accurate retrievals over complex urban and industrialized areas. The high abundance of aerosol particles in regions dominated by anthropogenic fossil fuel combustion, mega-cities and biomass burning affects the space-borne spectral measurement. Minimizing the tropospheric NO2 VCD biases under such conditions are one of the main challenges for the retrieval from air quality satellite instruments. In this study, reference Ozone Monitoring Instrument (OMI) DOMINO-v2 product was reprocessed over cloud-free scenes, by applying new aerosol correction parameters retrieved from the 477 nm O2-O2 band, over east China and South America for 2 years (2006–2007). These new parameters are based on two different and separate algorithms developed during the last two years in view of an improved use of the 477 nm O2-O2 band: (1) the updated OMCLDO2 algorithm which derives improved effective cloud parameters, (2) the aerosol neural network (NN) giving explicit aerosol parameters by assuming a more physical aerosol model. The OMI aerosol NN is a step ahead to OMCLDO2 by retrieving primarily an explicit aerosol layer height (ALH), and secondly an aerosol optical thickness τ for cloud-free observations. Overall, it was found that all the considered aerosol correction parameters reduce the biases identified in DOMINO-v2 over scenes in China with high aerosol abundance and scattering particles: e.g. from [−20 : −40] % to [0 : 20] % in summertime. The use of the retrieved OMI aerosol parameters leads in general to a more explicit aerosol correction and higher tropospheric NO2 VCD values, in the range of [0 : 40] %, than from the implicit correction with the updated OMCLDO2. This number overall represents an estimation of the aerosol correction strategy uncertainty nowadays for tropospheric NO2 VCD retrieval from space-borne visible measurements. The explicit aerosol correction theoretically includes more realistic aerosol multiple scattering and absorption effects, especially over scenes dominated by strongly absorbing particles, where the correction based on OMCLDO2 seems to remain insufficient. However, the use of ALH and τ from the OMI NN aerosol algorithm is not a straightforward operation and future studies are required to identify the optimal methodology. Several elements to be considered are recommended in this paper. Overall, we demonstrate the possibility to apply a more explicit aerosol correction by considering aerosol parameters directly derived from the 477 nm O2-O2 spectral band, measured by the same satellite instrument. Such an approach can, in theory, easily be transposed to the new-generation of space-borne instruments (e.g. TROPOMI on-board Sentinel-5 Precursor), enabling a fast reprocessing of tropospheric NO2 data over cloud-free scenes (cloudy pixels need to be filtered out), as well as for other trace gas retrievals (e.g. SO2, HCHO).


2020 ◽  
Vol 7 (2) ◽  
pp. 72-78
Author(s):  
Adnan Al Farisi ◽  
Yopi Handoyo ◽  
Taufiqur Rokhman

The One of alternative energy that is environmentally friendly is by untilize water energy and turn it into a Microhydro power plant. Microhydro power plant usually made from utilize the waterfall with the head fell. While utilization for streams with a head small drop is not optimal yet. This is a reference to doing research on harnessing the flow of a river that has a value of head low between 0.7 m – 1.4 m with turning it into a Vortex flow (vortex). The purpose of this research is to know  the effect variation number of blade on power and efficiency in the vortex turbine. This research uses experimental methods to find current, voltage, torque and rpm using a reading instrument. The materials research vortex turbine used 6 blade, 8 blade and 10 blade with flat plate. The result showed the highest efficiency is 29,93 % with produce turbine power is 19,58 W, generated on turbine with variation 10 blade with load 3,315 kg and the capacity of water 10,14 l/s. Followed with an efficiency 24,17% and produce turbine power is 15,81 W, generated on turbine with the variation 8 blade with load 3,315 kg and the capacity of water is 10,14 l/s. The the lowest turbine efficiency 22,32% with produce tuebine power 14,60 W, generated on turbine with the variation 6 blade with load 3,315 kg, the capacity of water is 10,14 l/s.


Author(s):  
Ramiro Remigio Gaibor Fernández ◽  
Abraham Adalberto Bayas Zamora ◽  
Galo Israel Muñoz Sánchez ◽  
Cristhian Adrián Rivas Santacruz

The objective of the present investigation was to evaluate the physical characteristics of the vermicompost and the quality of the purine of the red Californian (Eisenia foetida) using different substrates of feed for these worms. For this purpose, nine treatments were studied: 75% African palm rachis + 25% cattle manure, 50% African palm rachis + 50% cattle manure, 25% African palm rachis + 75% livestock manure, 50% manure of cattle, 50% of manure of cattle, 25% of manure of cattle, 50% of manure of cattle, 50% of manure of cattle, 50% of rach of coconut + 50% of manure of Livestock, 25% coccus rachis + 75% livestock manure. The substrate made up of 50% of rachis of coconut and 50% of livestock manure can be used in nurseries or nurseries for being the one that registered a value of pH 7.3 plus the closest to the neutral compared to the others, besides this (75% of oil palm rachis and 25% of cattle manure) showed a higher content of humic and fulvic acids (0.87 and 0.45 p / p, respectively), compounds that are important for agriculture by stimulating plant growth, in addition to this reflection 0.06% sulfur content, 4.0 ppm boron, 7.0 ppm copper, 47.5 ppm iron, 6.0 ppm manganese, with a presence of microorganisms of the species Trichoderma, Penicillium, Cladosporium sp. in amounts of 1.91x105 UFC / ml, however in this substrate was obtained between 13.3 and 43.5% less liquid slurry in Comparison with other treatments.


2021 ◽  
Vol 13 (13) ◽  
pp. 2489
Author(s):  
Lanlan Rao ◽  
Jian Xu ◽  
Dmitry S. Efremenko ◽  
Diego G. Loyola ◽  
Adrian Doicu

To retrieve aerosol properties from satellite measurements, micro-physical aerosol models have to be assumed. Due to the spatial and temporal inhomogeneity of aerosols, choosing an appropriate aerosol model is an important task. In this paper, we use a Bayesian algorithm that takes into account model uncertainties to retrieve the aerosol optical depth and layer height from synthetic and real TROPOMI O2A band measurements. The results show that in case of insufficient information for an appropriate micro-physical model selection, the Bayesian algorithm improves the accuracy of the solution.


1974 ◽  
Vol 29 (11) ◽  
pp. 1558-1571
Author(s):  
H.-J. Rehm

Paraelectric resonance spectra of beryl crystals are observed in the X-band region between 5 and 20 kV/cm under the condition that the external electric field F[101̅0]. Additional dielectric measurements show, that the paraelectric centres are the monomeric water molecules in the beryl cavities. For water dipoles in beryl only two orientations of the molecular a-axis relative to the crystal C6-axis are possible, and only those with their a-axis parallel to the C6-axis contribute to the paraelectric resonance effect. The electric moment vector µ of these latter molecules may rotate in the (0001)-crystal plane, i. e. around their own a-axis, and has a value of (1.9 ± 0.2) D. A theoretical description of paraelectric resonance is presented for a simplified model: the electric dipoles have 6 equivalent equilibrium positions along the [101̅0]-directions, tunnel effect and external electric fields remove the site degeneracy and we observe a molecular Stark splitting. We calculate a value of (2.0 ± 0.4) GHz for the zero-field splitting in the one-parameter Hamiltonian model.


2012 ◽  
Vol 84 (4) ◽  
pp. 1065-1071 ◽  
Author(s):  
Patricio J. Pereyra ◽  
Gustavo B. Rossini ◽  
Gustavo Darrigran

The golden mussel Limnoperna fortunei (Dunker 1857) is one of the most distributed Nuisance Invasive Species (NIS) in South America, and a threat of great concern for the industry of the area. In this study, we carried out toxicity tests made with a Neem's oil solution with L. fortunei larvae and benthonic adults (7, 13 and 19 ± 1 mm). Tests with non-target species (Daphnia magna, Lactuca sativa and Cnesterodon decemmculatus) were also made with the aim to evaluate the potential toxicity of the Neem's solution in the environment. The LC100 of Neem's solution obtained for larvae was 500 µl/L, a value much higher than the one obtained for D. magna and C. decemmaculatus. Thus, we recommend that it should not be used in open waters. However, since the adults were killed in 72 h and the larvae in 24 h, this product can be used in closed systems, in man-made facilities.


2007 ◽  
Vol 79 (2) ◽  
pp. 195-208 ◽  
Author(s):  
Gil C. Marques ◽  
Dominique Spehler

Based on a new approach to symmetries of the fundamental interactions we deal, in this paper, with the electroweak interactions of leptons. We show that the coupling constants, arising in the way leptons are coupled to intermediate bosons, can be understood as parameters associated to the breakdown of SU(2) and parity symmetries. The breakdown of both symmetries is characterized by a new parameter (the asymetry parameter) of the electroweak interactions. This parameter gives a measure of the strength of breakdown of symmetries. We analyse the behaviour of the theory for three values of this parameter. The most relevant value is the one for which only the electromagnetic interactions do not break parity (the maximally allowed left-right asymetric theory). Maximamally allowed parity asymmetry is a requirement that is met for a value of Weinberg's theta-angle that is quite close to the experimental value of this parameter.


Sign in / Sign up

Export Citation Format

Share Document