scholarly journals Evaluation of the Land GNSS-Reflected DDM Coherence on Soil Moisture Estimation from CYGNSS Data

2021 ◽  
Vol 13 (4) ◽  
pp. 570
Author(s):  
Zhounan Dong ◽  
Shuanggen Jin

With the development of spaceborne global navigation satellite system-reflectometry (GNSS-R), it can be used for terrestrial applications as a promising remote sensing tool, such as soil moisture (SM) retrieval. The reflected L-band GNSS signal from the land surface can simultaneously generate coherent and incoherent scattering, depending on surface roughness. However, the contribution of the incoherent component was directly ignored in previous GNSS-R land soil moisture content retrieval due to the hypothesis of its relatively small proportion. In this paper, a detection method is proposed to distinguish the coherence of land GNSS-R delay-Doppler map (DDM) from the cyclone global navigation satellite system (CYGNSS) mission in terms of DDM power-spreading features, which are characterized by different classification estimators. The results show that the trailing edge slope of normalized integrated time-delay waveform presents a better performance to recognize coherent and incoherent dominated observations, indicating that 89.6% of CYGNSS land observations are dominated by the coherent component. Furthermore, the impact of the land GNSS-Reflected DDM coherence on soil moisture retrieval is evaluated from 19-month CYGNSS data. The experiment results show that the influence of incoherent component and incoherent observations is marginal for CYGNSS soil moisture retrieval, and the RMSE of GNSS-R derived soil moisture reaches 0.04 cm3/cm3.

2021 ◽  
Vol 13 (11) ◽  
pp. 2032
Author(s):  
Junchan Lee ◽  
Sunil Bisnath ◽  
Regina S.K. Lee ◽  
Narin Gavili Kilane

This paper describes a computation method for obtaining dielectric constant using Global Navigation Satellite System reflectometry (GNSS-R) products. Dielectric constant is a crucial component in the soil moisture retrieval process using reflected GNSS signals. The reflectivity for circular polarized signals is combined with the dielectric constant equation that is used for radiometer observations. Data from the Cyclone Global Navigation Satellite System (CYGNSS) mission, an eight-nanosatellite constellation for GNSS-R, are used for computing dielectric constant. Data from the Soil Moisture Active Passive (SMAP) mission are used to measure the soil moisture through its radiometer, and they are considered as a reference to confirm the accuracy of the new dielectric constant calculation method. The analyzed locations have been chosen that correspond to sites used for the calibration and validation of the SMAP soil moisture product using in-situ measurement data. The retrieved results, especially in the case of a specular point around Yanco, Australia, show that the estimated results track closely to the soil moisture results, and the Root Mean Square Error (RMSE) in the estimated dielectric constant is approximately 5.73. Similar results can be obtained when the specular point is located near the Texas Soil Moisture Network (TxSON), USA. These results indicate that the analysis procedure is well-defined, and it lays the foundation for obtaining quantitative soil moisture content using the GNSS reflectometry results. Future work will include applying the computation product to determine the characteristics that will allow for the separation of coherent and incoherent signals in delay Doppler maps, as well as to develop local soil moisture models.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3646 ◽  
Author(s):  
Mariusz Specht ◽  
Cezary Specht ◽  
Andrzej Wilk ◽  
Władysław Koc ◽  
Leszek Smolarek ◽  
...  

Mobile Global Navigation Satellite System (GNSS) measurements carried out on the railway consist of using satellite navigation systems to determine the track geometry of a moving railway vehicle on a given route. Their purposes include diagnostics, stocktaking, and design work in railways. The greatest advantage of this method is the ability to perform measurements in a unified and coherent spatial reference system, which effectively enables the combining of design and construction works, as well as their implementation by engineering teams of diverse specialties. In the article, we attempted to assess the impact of using three types of work mode for a GNSS geodetic network [Global Positioning System (GPS), GPS/Global Navigation Satellite System (GLONASS) and GPS/GLONASS/Galileo] on positioning availability at three accuracy levels: 1 cm, 3 cm and 10 cm. This paper presents a mathematical model that enables the calculation of positioning availability at these levels. This model was also applied to the results of the measurement campaign performed by five GNSS geodetic receivers, made by a leading company in the field. Measurements with simultaneous position recording and accuracy assessment were taken separately on the same route for three types of receiver settings: GPS, GPS/GLONASS and GPS/GLONASS/Galileo in an urban area typical of a medium-sized city. The study has shown that applying a two-system solution (GPS/GLONASS) considerably increases the availability of high-precision coordinates compared to a single-system solution (GPS), whereas the measurements with three systems (GPS/GLONASS/Galileo) negligibly increase the availability compared to a two-system solution (GPS/GLONASS).


2019 ◽  
Vol 11 (7) ◽  
pp. 854 ◽  
Author(s):  
Wei Wan ◽  
Baojian Liu ◽  
Ziyue Zeng ◽  
Xi Chen ◽  
Guiping Wu ◽  
...  

NASA’s Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in 2016, is a small satellite constellation designed to measure the ocean surface wind speed in hurricanes and tropical cyclones. To explore its additional capabilities for applications on the land surface, this study investigated the advantages and limitations of using CYGNSS data to monitor flood inundation during typhoon and extreme precipitation events in southeast China in 2017. The results showed that despite the lack of quantitative evaluation, the CYGNSS-derived surface reflectivity (SR) and flood inundation area was qualitatively consistent with the Global Precipitation Measurement (GPM)-derived precipitation and Soil Moisture Active Passive (SMAP)/Soil Moisture and Ocean Salinity (SMOS)-derived total brightness temperature at circular polarization ( T b C ). The results provide supporting evidence for further designation of Global Navigation Satellite System (GNSS) reflectometry (GNSS-R) constellations to monitor land surface hydrology.


2021 ◽  
Author(s):  
Mohammad Al-Khaldi ◽  
Joel Johnson ◽  
Scott Gleason

<p>NASA's Cyclone Global Navigation Satellite System (CYGNSS) mission has continued to provide measurements of land surface specular scattering since its launch in December 2016. CYGNSS’s operates in a GNSS-R configuration in which  CYGNSS satellites together with GPS satellites form a bistatic radar geometry with GPS satellites acting as transmitters and CYGNSS satellites acting as receivers. The fundamental GNSS-R measurement obtained using the CYGNSS observatories is the delay-Doppler map (DDM), from which normalized radar cross section (NRCS) estimates are derived. The sensitivity of CYGNSS measurements to a wide range of surface properties has motivated their use for soil moisture retrievals.</p><p>This presentation reports an updated analysis of soil moisture retrieval errors using a previously reported time series soil moisture retrieval algorithm that considers a  multi-year CYGNSS dataset. The presentation also reports recent progress in which further simplifications to the proposed algorithm are introduced that limit its need for ancillary soil moisture data and promote use in an operational capacity. This is accomplished, in part, through the incorporation of a recently developed global Level-1 coherence detection methodology and the use of a soil moisture climatology.</p><p>Soil moisture is sensed using a time-series retrieval in which NRCS ratios derived from CYGNSS measurements are used to form a system of equations that can be solved for a times series of surface reflectivities. While the NRCS exhibits a dependence on a wide range of properties such as soil moisture, soil composition, vegetation cover, and surface roughness, NRCS ratios in consecutive acquisitions, at sufficiently low latency, exhibit a direct proportionality to reflectivity ratios that are a function of soil permittivity and therefore soil moisture. The dependence of NRCS ratios on reflectivity facilitates a location dependent inversion of reflectivity to soil moisture through a dielectric mixing model. The use of NRCS ratios however results in N-1 equations for the N soil moistures in the time series, thereby necessitating the incorporation of additional information typically expressed in terms of maximum and/or minimum soil moisture (or reflectivity) values over the time series when solving the system. These values can be obtained either from ancillary data from other systems or from a soil moisture climatology as incorporated in this presentation.</p><p>Retrieved moisture values from the updated algorithm are compared against observed values reported by the Soil Moisture Active Passive (SMAP) mission. The findings suggest that there exists potential for using GNSS-R systems for global soil moisture retrievals with an RMS error on the order of 0.06 cm<sup>3</sup>/cm<sup>3</sup> over varied terrain. The dependence of the algorithm’s retrieval error on land cover class, soil texture, and moisture variability trends will be reported in detail in this presentation.</p>


2020 ◽  
Vol 12 (4) ◽  
pp. 743 ◽  
Author(s):  
Donato Stilla ◽  
Mehrez Zribi ◽  
Nazzareno Pierdicca ◽  
Nicolas Baghdadi ◽  
Mireille Huc

The aim of this paper is to assess the potential use of data recorded by the Global Navigation Satellite System Reflectometry (GNSS-R) Cyclone Global Navigation Satellite System (CYGNSS) constellation to characterize desert surface roughness. The study is applied over the Sahara, the largest non-polar desert in the world. This is based on a spatio-temporal analysis of variations in Cyclone Global Navigation Satellite System (CYGNSS) data, expressed as changes in reflectivity (Γ). In general, the reflectivity of each type of land surface (reliefs, dunes, etc.) encountered at the studied site is found to have a high temporal stability. A grid of CYGNSS Γ measurements has been developed, at the relatively fine resolution of 0.03° × 0.03°, and the resulting map of average reflectivity, computed over a 2.5-year period, illustrates the potential of CYGNSS data for the characterization of the main types of desert land surface (dunes, reliefs, etc.). A discussion of the relationship between aerodynamic or geometric roughness and CYGNSS reflectivity is proposed. A high correlation is observed between these roughness parameters and reflectivity. The behaviors of the GNSS-R reflectivity and the Advanced Land Observing Satellite-2 (ALOS-2) Synthetic Aperture Radar (SAR) backscattering coefficient are compared and found to be strongly correlated. An aerodynamic roughness (Z0) map of the Sahara is proposed, using four distinct classes of terrain roughness.


2017 ◽  
Vol 145 (2) ◽  
pp. 637-651 ◽  
Author(s):  
S. Mark Leidner ◽  
Thomas Nehrkorn ◽  
John Henderson ◽  
Marikate Mountain ◽  
Tom Yunck ◽  
...  

Global Navigation Satellite System (GNSS) radio occultations (RO) over the last 10 years have proved to be a valuable and essentially unbiased data source for operational global numerical weather prediction. However, the existing sampling coverage is too sparse in both space and time to support forecasting of severe mesoscale weather. In this study, the case study or quick observing system simulation experiment (QuickOSSE) framework is used to quantify the impact of vastly increased numbers of GNSS RO profiles on mesoscale weather analysis and forecasting. The current study focuses on a severe convective weather event that produced both a tornado and flash flooding in Oklahoma on 31 May 2013. The WRF Model is used to compute a realistic and faithful depiction of reality. This 2-km “nature run” (NR) serves as the “truth” in this study. The NR is sampled by two proposed constellations of GNSS RO receivers that would produce 250 thousand and 2.5 million profiles per day globally. These data are then assimilated using WRF and a 24-member, 18-km-resolution, physics-based ensemble Kalman filter. The data assimilation is cycled hourly and makes use of a nonlocal, excess phase observation operator for RO data. The assimilation of greatly increased numbers of RO profiles produces improved analyses, particularly of the lower-tropospheric moisture fields. The forecast results suggest positive impacts on convective initiation. Additional experiments should be conducted for different weather scenarios and with improved OSSE systems.


2018 ◽  
Vol 11 (1) ◽  
pp. 41 ◽  
Author(s):  
Florian Zus ◽  
Jan Douša ◽  
Michal Kačmařík ◽  
Pavel Václavovic ◽  
Galina Dick ◽  
...  

We developed operators to assimilate Global Navigation Satellite System (GNSS) Zenith Total Delays (ZTDs) and horizontal delay gradients into a numerical weather model. In this study we experiment with refractivity fields derived from the Global Forecast System (GFS) available with a horizontal resolution of 0.5°. We begin our investigations with simulated observations. In essence, we extract the tropospheric parameters from the GFS analysis, add noise to mimic observation errors and assimilate the simulated observations into the GFS 24h forecast valid at the same time. We consider three scenarios: (1) the assimilation of ZTDs (2) the assimilation of horizontal delay gradients and (3) the assimilation of both ZTDs and horizontal delay gradients. The impact is measured by utilizing the refractivity fields. We find that the assimilation of the horizontal delay gradients in addition to the ZTDs improves the refractivity field around 800 hPa. When we consider a single station there is a clear improvement when horizontal delay gradients are assimilated in addition to the ZTDs because the horizontal delay gradients contain information that is not contained in the ZTDs. On the other hand, when we consider a dense station network there is not a significant improvement when horizontal delay gradients are assimilated in addition to the ZTDs because the horizontal delay gradients do not contain information that is not already contained in the ZTDs. Finally, we replace simulated by real observations, that is, tropospheric parameters from a Precise Point Positioning solution provided with the G-Nut/Tefnut software, in order to show that the GFS 24h forecast is indeed improved when GNSS horizontal delay gradients are assimilated in addition to GNSS ZTDs; for the considered station (Potsdam, Germany) and period (June and July, 2017) we find an improvement in the retrieved refractivity of up to 4%.


2020 ◽  
Vol 12 (11) ◽  
pp. 1699 ◽  
Author(s):  
Ting Yang ◽  
Wei Wan ◽  
Zhigang Sun ◽  
Baojian Liu ◽  
Sen Li ◽  
...  

Spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) provides a new opportunity for land observation. This study is the first to compare and evaluate the performance of the only two spaceborne GNSS-R satellite missions whose data are publicly available, i.e., the UK’s TechdemoSat-1 (TDS-1) and the US’s Cyclone Global Navigation Satellite System (CYGNSS), for sensitivity analysis with SMAP SM on a daily basis and soil moisture (SM) estimates on a monthly basis over Mainland China. For daily sensitivity analysis, the two data were matched up and compared for the period (i.e., May 2017 through April 2018) when they coexisted (R = 0.561 vs R = 0.613). For monthly SM estimates, a back-propagation artificial neural network (BP-ANN) was used to construct a model using data from more than two years. The model was subsequently used to derive long-term and continuous SM maps over Mainland China. The results showed that TDS-1 and CYGNSS agree and correlate very well with the SMAP SM in Mainland China (R = 0.676, MAE = 0.052 m3m-3, and ubRMSE = 0.060 m3m-3 for TDS-1; R = 0.798, MAE = 0.040 m3m-3, and ubRMSE = 0.062 m3m-3 for CYGNSS). The retrieved results were further validated using monthly in situ SM data from dense sites across Mainland China. It was found that the SM derived from the TDS-1/ CYGNSS also correlated well with in situ SM (R = 0.687, MAE = 0.066 m3m-3, and ubRMSE = 0.056 m3m-3 for TDS-1; R = 0.724, MAE = 0.052 m3m-3, and ubRMSE = 0.053 m3m-3 for CYGNSS). The results in this study suggested that TDS-1/CYGNSS and the upcoming spaceborne GNSS-R mission could be new and powerful data sources to produce SM data set at a large scale and with relatively high precision.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fahad Alhomayani ◽  
Mohammad H. Mahoor

AbstractIn recent years, fingerprint-based positioning has gained researchers’ attention since it is a promising alternative to the Global Navigation Satellite System and cellular network-based localization in urban areas. Despite this, the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions constitutes a high entry barrier for studies. As an effort to overcome this barrier and foster new research efforts, this paper presents OutFin, a novel dataset of outdoor location fingerprints that were collected using two different smartphones. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 reference points. Each site is different in terms of its visibility to the Global Navigation Satellite System and reference points’ number, arrangement, and spacing. Before OutFin was made available to the public, several experiments were conducted to validate its technical quality.


Sign in / Sign up

Export Citation Format

Share Document