scholarly journals Contribution of Snow-Melt Water to the Streamflow over the Three-River Headwater Region, China

2021 ◽  
Vol 13 (8) ◽  
pp. 1585
Author(s):  
Sisi Li ◽  
Mingliang Liu ◽  
Jennifer C. Adam ◽  
Huawei Pi ◽  
Fengge Su ◽  
...  

Snowmelt water is essential to the water resources management over the Three-River Headwater Region (TRHR), where hydrological processes are influenced by snowmelt runoff and sensitive to climate change. The objectives of this study were to analyse the contribution of snowmelt water to the total streamflow (fQ,snow) in the TRHR by applying a snowmelt tracking algorithm and Variable Infiltration Capacity (VIC) model. The ratio of snowfall to precipitation, and the variation of the April 1 snow water equivalent (SWE) associated with fQ,snow, were identified to analyse the role of snowpack in the hydrological cycle. Prior to the simulation, the VIC model was validated based on the observed streamflow data to recognize its adequacy in the region. In order to improve the VIC model in snow hydrology simulation, Advanced Scanning Microwave Radiometer E (ASMR-E) SWE product data was used to compare with VIC output SWE to adjust the snow parameters. From 1971 to 2007, the averaged fQ,snow was 19.9% with a significant decreasing trend over entire TRHR (P<0.05).The influence factor resulted in the rate of change in fQ,snow which were different for each sub-basin TRHR. The decreasing rate of fQ,snow was highest of 0.24%/year for S_Lantsang, which should be due to the increasing streamflow and the decreasing snowmelt water. For the S_Yangtze, the increasing streamflow contributed more than the stable change of snowmelt water to the decreasing fQ,snow with a rate of 0.1%/year. The April 1 SWE with the minimum value appearing after 2000 and the decreased ratio of snowfall to precipitation during the study period, suggested the snow solid water resource over the TRHR was shrinking. Our results imply that the role of snow in the snow-hydrological regime is weakening in the TRHR in terms of water supplement and runoff regulation due to the decreased fQ,snow and snowfall.

2008 ◽  
Vol 9 (1) ◽  
pp. 149-164 ◽  
Author(s):  
Konstantinos M. Andreadis ◽  
Ding Liang ◽  
Leung Tsang ◽  
Dennis P. Lettenmaier ◽  
Edward G. Josberger

Abstract Traditional approaches to the direct estimation of snow properties from passive microwave remote sensing have been plagued by limitations such as the tendency of estimates to saturate for moderately deep snowpacks and the effects of mixed land cover within remotely sensed pixels. An alternative approach is to assimilate satellite microwave emission observations directly, which requires embedding an accurate microwave emissions model into a hydrologic prediction scheme, as well as quantitative information of model and observation errors. In this study a coupled snow hydrology [Variable Infiltration Capacity (VIC)] and microwave emission [Dense Media Radiative Transfer (DMRT)] model are evaluated using multiscale brightness temperature (TB) measurements from the Cold Land Processes Experiment (CLPX). The ability of VIC to reproduce snowpack properties is shown with the use of snow pit measurements, while TB model predictions are evaluated through comparison with Ground-Based Microwave Radiometer (GBMR), aircraft [Polarimetric Scanning Radiometer (PSR)], and satellite [Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E)] TB measurements. Limitations of the model at the point scale were not as evident when comparing areal estimates. The coupled model was able to reproduce the TB spatial patterns observed by PSR in two of three sites. However, this was mostly due to the presence of relatively dense forest cover. An interesting result occurs when examining the spatial scaling behavior of the higher-resolution errors; the satellite-scale error is well approximated by the mode of the (spatial) histogram of errors at the smaller scale. In addition, TB prediction errors were almost invariant when aggregated to the satellite scale, while forest-cover fractions greater than 30% had a significant effect on TB predictions.


2014 ◽  
Vol 15 (4) ◽  
pp. 1344-1365 ◽  
Author(s):  
Do Hyuk Kang ◽  
Xiaogang Shi ◽  
Huilin Gao ◽  
Stephen J. Déry

Abstract This paper presents an application of the Variable Infiltration Capacity (VIC) model to the Fraser River basin (FRB) of British Columbia (BC), Canada, over the latter half of the twentieth century. The Fraser River is the longest waterway in BC and supports the world’s most abundant Pacific Ocean salmon populations. Previous modeling and observational studies have demonstrated that the FRB is a snow-dominated system, but with climate change, it may evolve to a pluvial regime. Thus, the goal of this study is to evaluate the changing contribution of snow to the hydrology of the FRB over the latter half of the twentieth century. To this end, a 0.25° atmospheric forcing dataset is used to drive the VIC model from 1949 to 2006 (water years) at a daily time step over a domain covering the entire FRB. A model evaluation is first conducted over 11 major subwatersheds of the FRB to quantitatively assess the spatial variations of snow water equivalent (SWE) and runoff (R). The ratio of the spatially averaged maximum SWE to R (RSR) is used to quantify the contribution of snow to the runoff in the 11 subwatersheds of interest. From 1949 to 2006, RSR exhibits a significant decline in 9 of the 11 subwatersheds (with p &lt; 0.05 according to the Mann–Kendall test statistics). To determine the sensitivity of RSR, the air temperature and precipitation in the forcing dataset are then perturbed. The ratio RSR decreases more significantly, especially during the 1990s and 2000s, when air temperatures have warmed considerably compared to the 1950s. On the other hand, increasing precipitation by a multiplicative factor of 1.1 causes RSR to decrease. As the climate continues to warm, ecological processes and human usage of natural resources in the FRB may be substantially affected by its transition from a snow to a hybrid (nival/pluvial) and even a rain-dominated system.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jacob R. Schaperow ◽  
Dongyue Li ◽  
Steven A. Margulis ◽  
Dennis P. Lettenmaier

AbstractHydrologic models predict the spatial and temporal distribution of water and energy at the land surface. Currently, parameter availability limits global-scale hydrologic modelling to very coarse resolution, hindering researchers from resolving fine-scale variability. With the aim of addressing this problem, we present a set of globally consistent soil and vegetation parameters for the Variable Infiltration Capacity (VIC) model at 1/16° resolution (approximately 6 km at the equator), with spatial coverage from 60°S to 85°N. Soil parameters derived from interpolated soil profiles and vegetation parameters estimated from space-based MODIS measurements have been compiled into input files for both the Classic and Image drivers of the VIC model, version 5. Geographical subsetting codes are provided, as well. Our dataset provides all necessary land surface parameters to run the VIC model at regional to global scale. We evaluate VICGlobal’s ability to simulate the water balance in the Upper Colorado River basin and 12 smaller basins in the CONUS, and their ability to simulate the radiation budget at six SURFRAD stations in the CONUS.


1979 ◽  
Author(s):  
P.D. Richardson

Thrombocyte adhesion and aggregation in a vessel or on a chamber wall can be measured most readily if the flow is controlled and steady, and continuous observation is used. Videotape recording is very helpful for subsequent quantification of the dynamics. The adhesion of each thrombocyte can occur for a finite time interval:this interval has been observed to have a wide range. Platelets which escape often leave open a site which attracts other platelets preferentially. The rate of change of adhesion density (platelets/mm2) is affected by the local shear rate and the shear history upstream. Aggregation is affected similarly, and also proceeds with some platelet turnover. The role of erythrocytes in facilitating cross-stream migration of thrombocytes (which can enhance the growth rate of large thrombi) appears due in part to convective flow fields induced by the motion of erythrocytes in a shear flow, which can be demonstrated theoretically and experimentally. Observations of the phenomenlogy of adhesion and aggregation under controlled flow conditions and comparison with fLu id-dynamically based theory allows representation in terras of a small number of parameters with prospects of prediction of behaviour over a wide range of haemodynamic conditions; biochemical changes lead to changes in values of the parameters, so that activating agents and inhibiting agents modify values in different directions.


2010 ◽  
Vol 11 (1) ◽  
pp. 122-138 ◽  
Author(s):  
Guoxiang Yang ◽  
Laura C. Bowling ◽  
Keith A. Cherkauer ◽  
Bryan C. Pijanowski ◽  
Dev Niyogi

Abstract Impervious surface area (ISA) has different surface characteristics from the natural land cover and has great influence on watershed hydrology. To assess the urbanization effects on streamflow regimes, the authors analyzed the U.S. Geological Survey (USGS) streamflow data of 16 small watersheds in the White River [Indiana (IN)] basin. Correlation between hydrologic metrics (flow distribution, daily variation in streamflow, and frequency of high-flow events) and ISA was investigated by employing the nonparametric Mann–Kendall method. Results derived from the 16 watersheds show that urban intensity has a significant effect on all three hydrologic metrics. The Variable Infiltration Capacity (VIC) model was modified to represent ISA in urbanized basins using a bulk parameterization approach. The model was then applied to the White River basin to investigate the potential ability to simulate the water and energy cycle response to urbanization. Correlation analysis for individual VIC grid cells indicates that the VIC urban model was able to reproduce the slope magnitude and mean value of the USGS streamflow metrics. The urban model also reproduced the urban heat island (UHI) seen in the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature products, especially for the grids encompassing the city of Indianapolis, IN. The difference of the hydrologic metrics obtained from the VIC model with and without urban representation indicates that the streamflow regime in the White River has been modified because of urban development. The observed data, together with model analysis, suggested that 3%–5% ISA in a watershed is the detectable threshold, beyond which urbanization effects start to have a statistically significant influence on streamflow regime.


2013 ◽  
Vol 68 (10) ◽  
pp. 2164-2170 ◽  
Author(s):  
Nora Sillanpää ◽  
Harri Koivusalo

Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.


2021 ◽  
Author(s):  
Akshay Rajeev ◽  
Vimal Mishra

&lt;p&gt;India is severely affected by tropical cyclones (TC) each year, which generates intense rainfall and strong winds leading to flooding. Most of the TC induced floods have been attributed to heavy rain associated with them. Here we show that both rainfall and elevated antecedent soil moisture due to temporally compounding tropical cyclones cause floods in the major Indian basins. We assess each basin's response to observed TC events from 1980 to 2019 using the Variable Infiltration Capacity (VIC) model. The VIC model was calibrated (R2 &gt; 0.5) and evaluated against observed hourly streamflow for major river basins in India. We find that rainfall due to TC does not result in floods in the basin, even for rainfall intensities similar to the monsoon period. However, TCs produce floods in the basins, when antecedent soil moisture was high. Our findings have implications for the understanding of TC induced floods, which is crucial for disaster mitigation and management.&lt;/p&gt;


2013 ◽  
Vol 17 (7) ◽  
pp. 2781-2796 ◽  
Author(s):  
S. Shukla ◽  
J. Sheffield ◽  
E. F. Wood ◽  
D. P. Lettenmaier

Abstract. Global seasonal hydrologic prediction is crucial to mitigating the impacts of droughts and floods, especially in the developing world. Hydrologic predictability at seasonal lead times (i.e., 1–6 months) comes from knowledge of initial hydrologic conditions (IHCs) and seasonal climate forecast skill (FS). In this study we quantify the contributions of two primary components of IHCs – soil moisture and snow water content – and FS (of precipitation and temperature) to seasonal hydrologic predictability globally on a relative basis throughout the year. We do so by conducting two model-based experiments using the variable infiltration capacity (VIC) macroscale hydrology model, one based on ensemble streamflow prediction (ESP) and another based on Reverse-ESP (Rev-ESP), both for a 47 yr re-forecast period (1961–2007). We compare cumulative runoff (CR), soil moisture (SM) and snow water equivalent (SWE) forecasts from each experiment with a VIC model-based reference data set (generated using observed atmospheric forcings) and estimate the ratio of root mean square error (RMSE) of both experiments for each forecast initialization date and lead time, to determine the relative contribution of IHCs and FS to the seasonal hydrologic predictability. We find that in general, the contributions of IHCs to seasonal hydrologic predictability is highest in the arid and snow-dominated climate (high latitude) regions of the Northern Hemisphere during forecast periods starting on 1 January and 1 October. In mid-latitude regions, such as the Western US, the influence of IHCs is greatest during the forecast period starting on 1 April. In the arid and warm temperate dry winter regions of the Southern Hemisphere, the IHCs dominate during forecast periods starting on 1 April and 1 July. In equatorial humid and monsoonal climate regions, the contribution of FS is generally higher than IHCs through most of the year. Based on our findings, we argue that despite the limited FS (mainly for precipitation) better estimates of the IHCs could lead to improvement in the current level of seasonal hydrologic forecast skill over many regions of the globe at least during some parts of the year.


1985 ◽  
Vol 104 (1) ◽  
pp. 165-170 ◽  
Author(s):  
E. M. Wintour ◽  
M. B. Smith ◽  
R. J. Bell ◽  
J. G. McDougall ◽  
M. N. Cauchi

ABSTRACT The switch from γ (fetal) to β (adult) globin production was studied by the analysis of globin synthesis in chronically cannulated ovine fetuses and newborn lambs. The γ/α globin synthesis ratio decreased from 0·98 ± 0·11 (s.d.) (n = 4 samples) at 100–120 days of gestation to 0·15± 0·07 (n = 4) in lambs of 150–156 days post-conception, and the β/α synthesis ratio increased from 0·04 ± 0·06 (n = 4) to 1·13 ± 0·21 (n = 4) over the same period. In bilaterally adrenalectomized fetuses, which survived in utero until 151–156 days, the γ/α and β/α synthesis ratios were 0·64 ± 0·14 (n = 3) and 0·25 ± 0·07 (n = 3) respectively in the 150- to 156-day period. Bilateral adrenalectomy did not affect the time of onset of β globin synthesis, but significantly decreased the rate. In one bilaterally adrenalectomized fetus the infusion of increasing concentrations of cortisol restored the rate of β globin synthesis to normal. Treatment of three intact fetuses with 100 μg cortisol/h for 3 weeks, from 100 to 121 days, did not affect the timing or rate of switch from γ to β globin synthesis. Thus fetal adrenal secretions, probably cortisol, affected the rate of change of γ to β globin synthesis but other factors must have been involved in the initiation of the switch. J. Endocr. (1985) 104, 165–170


Sign in / Sign up

Export Citation Format

Share Document