scholarly journals Adaptive Determination of the Flow Accumulation Threshold for Extracting Drainage Networks from DEMs

2021 ◽  
Vol 13 (11) ◽  
pp. 2024
Author(s):  
Wei Zhang ◽  
Wenkai Li ◽  
Hugo A. Loaiciga ◽  
Xiuguo Liu ◽  
Shuya Liu ◽  
...  

Selecting the flow accumulation threshold (FAT) plays a central role in extracting drainage networks from Digital Elevation Models (DEMs). This work presents the MR-AP (Multiple Regression and Adaptive Power) method for choosing suitable FAT when extracting drainage from DEMs. This work employs 36 sample sub-basins in Hubei (China) province. Firstly, topography, the normalized difference vegetation index (NDVI), and water storage change are used in building multiple regression models to calculate the drainage length. Power functions are fit to calculate the FAT of each sub-basin. Nine randomly chosen regions served as test sub-basins. The results show that: (1) water storage change and NDVI have high correlation with the drainage length, and the coefficient of determination (R2) ranges between 0.85 and 0.87; (2) the drainage length obtained from the Multiple Regression model using water storage change, NDVI, and topography as influence factors is similar to the actual drainage length, featuring a coefficient of determination (R2) equal to 0.714; (3) the MR-AP method calculates suitable FATs for each sub-basin in Hubei province, with a drainage length error equal to 5.13%. Moreover, drainage network extraction by the MR-AP method mainly depends on the water storage change and the NDVI, thus being consistent with the regional water-resources change.

2021 ◽  
Vol 13 (11) ◽  
pp. 2088
Author(s):  
Carlos Quemada ◽  
José M. Pérez-Escudero ◽  
Ramón Gonzalo ◽  
Iñigo Ederra ◽  
Luis G. Santesteban ◽  
...  

This paper reviews the different remote sensing techniques found in the literature to monitor plant water status, allowing farmers to control the irrigation management and to avoid unnecessary periods of water shortage and a needless waste of valuable water. The scope of this paper covers a broad range of 77 references published between the years 1981 and 2021 and collected from different search web sites, especially Scopus. Among them, 74 references are research papers and the remaining three are review papers. The different collected approaches have been categorized according to the part of the plant subjected to measurement, that is, soil (12.2%), canopy (33.8%), leaves (35.1%) or trunk (18.9%). In addition to a brief summary of each study, the main monitoring technologies have been analyzed in this review. Concerning the presentation of the data, different results have been obtained. According to the year of publication, the number of published papers has increased exponentially over time, mainly due to the technological development over the last decades. The most common sensor is the radiometer, which is employed in 15 papers (20.3%), followed by continuous-wave (CW) spectroscopy (12.2%), camera (10.8%) and THz time-domain spectroscopy (TDS) (10.8%). Excluding two studies, the minimum coefficient of determination (R2) obtained in the references of this review is 0.64. This indicates the high degree of correlation between the estimated and measured data for the different technologies and monitoring methods. The five most frequent water indicators of this study are: normalized difference vegetation index (NDVI) (12.2%), backscattering coefficients (10.8%), spectral reflectance (8.1%), reflection coefficient (8.1%) and dielectric constant (8.1%).


2020 ◽  
Vol 12 (12) ◽  
pp. 2015 ◽  
Author(s):  
Manuel Ángel Aguilar ◽  
Rafael Jiménez-Lao ◽  
Abderrahim Nemmaoui ◽  
Fernando José Aguilar ◽  
Dilek Koc-San ◽  
...  

Remote sensing techniques based on medium resolution satellite imagery are being widely applied for mapping plastic covered greenhouses (PCG). This article aims at testing the spectral consistency of surface reflectance values of Sentinel-2 MSI (S2 L2A) and Landsat 8 OLI (L8 L2 and the pansharpened and atmospherically corrected product from L1T product; L8 PANSH) data in PCG areas located in Spain, Morocco, Italy and Turkey. The six corresponding bands of S2 and L8, together with the normalized difference vegetation index (NDVI), were generated through an OBIA approach for each PCG study site. The coefficient of determination (r2) and the root mean square error (RMSE) were computed in sixteen cloud-free simultaneously acquired image pairs from the four study sites to evaluate the coherence between the two sensors. It was found that the S2 and L8 correlation (r2 > 0.840, RMSE < 9.917%) was quite good in most bands and NDVI. However, the correlation of the two sensors fluctuated between study sites, showing occasional sun glint effects on PCG roofs related to the sensor orbit and sun position. Moreover, higher surface reflectance discrepancies between L8 L2 and L8 PANSH data, mainly in the visible bands, were always observed in areas with high-level aerosol values derived from the aerosol quality band included in the L8 L2 product (SR aerosol). In this way, the consistency between L8 PANSH and S2 L2A was improved mainly in high-level aerosol areas according to the SR aerosol band.


2016 ◽  
Vol 14 (3) ◽  
pp. e0907 ◽  
Author(s):  
Mostafa K. Mosleh ◽  
Quazi K. Hassan ◽  
Ehsan H. Chowdhury

This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh.


2021 ◽  
Vol 42 (4) ◽  
pp. 2181-2202
Author(s):  
Taiara Souza Costa ◽  
◽  
Robson Argolo dos Santos ◽  
Rosângela Leal Santos ◽  
Roberto Filgueiras ◽  
...  

This study proposes to estimate the actual crop evapotranspiration, using the SAFER model, as well as calculate the crop coefficient (Kc) as a function of the normalized difference vegetation index (NDVI) and determine the biomass of an irrigated maize crop using images from the Operational Land Imager (OLI) and Thermal Infrared (TIRS) sensors of the Landsat-8 satellite. Pivots 21 to 26 of a commercial farm located in the municipalities of Bom Jesus da Lapa and Serra do Ramalho, west of Bahia State, Brazil, were selected. Sowing dates for each pivot were arranged as North and South or East and West, with cultivation starting firstly in one of the orientations and subsequently in the other. The relationship between NDVI and the Kc values obtained in the FAO-56 report (KcFAO) revealed a high coefficient of determination (R2 = 0.7921), showing that the variance of KcFAO can be explained by NDVI in the maize crop. Considering the center pivots with different planting dates, the crop evapotranspiration (ETc) pixel values ranged from 0.0 to 6.0 mm d-1 during the phenological cycle. The highest values were found at 199 days of the year (DOY), corresponding to around 100 days after sowing (DAS). The lowest BIO values occur at 135 DOY, at around 20 DAS. There is a relationship between ETc and BIO, where the DOY with the highest BIO are equivalent to the days with the highest ETc values. In addition to this relationship, BIO is strongly influenced by soil water availability.


2018 ◽  
Vol 8 (2) ◽  
pp. 249-259 ◽  
Author(s):  
Miloš Barták ◽  
Kumud Bandhu Mishra ◽  
Michaela Marečková

Lichens, in polar and alpine regions, pass through repetitive dehydration and rehydration events over the years. The harsh environmental conditions affect the plasticity of lichen’s functional and structural features for their survival, in a species-specific way, and, thus, their optical and spectral characteristics. For an understanding on how dehydration affects lichens spectral reflectance, we measured visible (VIS) and near infrared (NIR) reflectance spectra of Dermatocarpon polyphyllizum, a foliose lichen species, from James Ross Island (Antarctica), during gradual dehydration from fully wet (relative water content (RWC) = 100%) to dry state (RWC = 0%), under laboratory conditions, and compared several derived reflectance indices (RIs) to RWC. We found a curvilinear relationship between RWC and range of RIs: water index (WI), photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), modified chlorophyll absorption in reflectance indices (MCARI and MCARI1), simple ratio pigment index (SRPI), normalized pigment chlorophyll index (NPCI), and a new NIR shoulder region spectral ratio index (NSRI). The index NDVI was initially increased with maxima around 70% RWC and it steadily declined with further desiccation, whereas PRI in-creased with desiccation and steeply falls when RWC was below 10%. The curvilinear relationship, for RIs versus RWC, was best fitted by polynomial regressions of second or third degree, and it was found that RWC showed very high correlation with WI (R2 = 0.94) that is followed by MCARI (R2 = 0.87), NDVI (R2 = 0.83), and MCARI (R2 = 0.81). The index NSRI, proposed for accessing structural deterioration, was almost invariable during dehydration with the least value of the coefficient of determination (R2 = 0.28). This may mean that lichen, Dermatocarpon polyphyllizum, activates protection mechanisms initially in response to the progression of dehydration; however, severe dehydration causes deactivation of photosynthesis and associated pigments without much affecting its structure.


2018 ◽  
Author(s):  
Zhigang Sun ◽  
Zhu Ouyang ◽  
Xubo Zhang ◽  
Wei Ren

Abstract. Besides cumulative temperature and precipitation, the phase synchronization of temperature and precipitation also helps to regulate vegetation distribution and productivity across global lands. However, the phase synchronization has been rarely considered in previous studies related to climate and biogeography due to a lack of a robust and quantitative approach. In this study, we proposed a synchronization index of temperature and precipitation (SI-TaP) and then investigated its global spatial distribution, interannual fluctuation, and long-term trend derived from a global 60-year dataset of meteorological forcings. Further investigation was conducted to understand the relationship between SI-TaP and the annually summed Normalized Difference Vegetation Index (NDVI), which could be a proxy of terrestrial vegetation productivity. Results show differences in both spatial patterns and temporal variations between SI-TaP and air temperature and precipitation, but SI-TaP may help to explain the distribution and productivity of terrestrial vegetation. About 60 % of regions where annually summed NDVI is greater than half of its maximum value overlap regions where SI-TaP is greater than half of its maximum value. By using SI-TaP to explain vegetation productivity along with temperature and precipitation, the maximum increase in the coefficient of determination is 0.66 across global lands. Results from this study suggest that the proposed SI-TaP index is helpful to better understand climate change and its relation to the biota. Dataset available at http://www.dx.doi.org/10.11922/sciencedb.642 or http://www.sciencedb.cn/dataSet/handle/642.


2020 ◽  
Vol 12 (8) ◽  
pp. 1297
Author(s):  
Roberto Filgueiras ◽  
Everardo Chartuni Mantovani ◽  
Elpídio Inácio Fernandes-Filho ◽  
Fernando França da Cunha ◽  
Daniel Althoff ◽  
...  

One of the obstacles in monitoring agricultural crops is the difficulty in understanding and mapping rapid changes of these crops. With the purpose of addressing this issue, this study aimed to model and fuse the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) using Landsat-like images to achieve daily high spatial resolution NDVI. The study was performed for the period of 2017 on a commercial farm of irrigated maize-soybean rotation in the western region of the state of Bahia, Brazil. To achieve the objective, the following procedures were performed: (i) Landsat-like images were upscaled to match the Landsat-8 spatial resolution (30 m); (ii) the reflectance of Landsat-like images was intercalibrated using the Landsat-8 as a reference; (iii) Landsat-like reflectance images were upscaled to match the MODIS sensor spatial resolution (250 m); (iv) regression models were trained daily to model MODIS NDVI using the upscaled Landsat-like reflectance images (250 m) of the closest day as the input; and (v) the intercalibrated version of the Landsat-like images (30 m) used in the previous step was used as the input for the trained model, resulting in a downscaled MODIS NDVI (30 m). To determine the best fitting model, we used the following statistical metrics: coefficient of determination (r2), root mean square error (RMSE), Nash–Sutcliffe efficiency index (NSE), mean bias error (MBE), and mean absolute error (MAE). Among the assessed regression models, the Cubist algorithm was sensitive to changes in agriculture and performed best in modeling of the Landsat-like MODIS NDVI. The results obtained in the present research are promising and can enable the monitoring of dynamic phenomena with images available free of charge, changing the way in which decisions are made using satellite images.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5551
Author(s):  
Chao Sun ◽  
Jialin Li ◽  
Luodan Cao ◽  
Yongchao Liu ◽  
Song Jin ◽  
...  

The successful launch of the Sentinel-2 constellation satellite, along with advanced cloud detection algorithms, has enabled the generation of continuous time series at high spatial and temporal resolutions, which is in turn expected to enable the classification of salt marsh vegetation over larger spatiotemporal scales. This study presents a critical comparison of vegetation index (VI) and curve fitting methods—two key factors for time series construction that potentially influence vegetation classification performance. To accomplish this objective, the stability of five different VI time series, namely Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), Green Normalized Difference Vegetation Index (GNDVI), and Water-Adjusted Vegetation Index (WAVI), was compared empirically; the suitability between three curve fitting methods, namely Asymmetric Gaussian (AG), Double Logistic (DL), and Two-term Fourier (TF), and VI time series was measured using the coefficient of determination, and the salt marsh vegetation separability among different combinations of VI time series and curve fitting methods (i.e., VI time series-based curve fitting model) was quantified using overall the Jeffries–Matusita distance. Six common types of salt marsh vegetation from three typical coastal sites in China were used to validate these findings, which demonstrate: (1) the SAVI performed best in terms of time series stability, while the EVI exhibited relatively poor time series stability with conspicuous outliers induced by the sensitivity to omitted clouds and shadows; (2) the DL method commonly resulted in the most accurate classification of different salt marsh vegetation types, especially when combined with the EVI time series, followed by the TF method; and (3) the SAVI/NDVI-based DL/TF model demonstrated comparable efficiency for classifying salt marsh vegetation. Notably, the SAVI/NDVI-based DL model performed most strongly for high latitude regions with a continental climate, whilst the SAVI/NDVI-based TF model appears to be better suited to mid- to low latitude regions dominated by a monsoonal climate.


2021 ◽  
Vol 13 (15) ◽  
pp. 2993
Author(s):  
Ruiyang Yu ◽  
Yunjun Yao ◽  
Qiao Wang ◽  
Huawei Wan ◽  
Zijing Xie ◽  
...  

The long-term estimation of grassland aboveground biomass (AGB) is important for grassland resource management in the Three-River Headwaters Region (TRHR) of China. Due to the lack of reliable grassland AGB datasets since the 1980s, the long-term spatiotemporal variation in grassland AGB in the TRHR remains unclear. In this study, we estimated AGB in the grassland of 209,897 km2 using advanced very high resolution radiometer (AVHRR), MODerate-resolution Imaging Spectroradiometer (MODIS), meteorological, ancillary data during 1982–2018, and 75 AGB ground observations in the growth period of 2009 in the TRHR. To enhance the spatial representativeness of ground observations, we firstly upscaled the grassland AGB using a gradient boosting regression tree (GBRT) model from ground observations to a 1 km spatial resolution via MODIS normalized difference vegetation index (NDVI), meteorological and ancillary data, and the model produced validation results with a coefficient of determination (R2) equal to 0.76, a relative mean square error (RMSE) equal to 88.8 g C m−2, and a bias equal to −1.6 g C m−2 between the ground-observed and MODIS-derived upscaled AGB. Then, we upscaled grassland AGB using the same model from a 1 km to 5 km spatial resolution via AVHRR NDVI and the same data as previously mentioned with the validation accuracy (R2 = 0.74, RMSE = 57.8 g C m−2, and bias = −0.1 g C m−2) between the MODIS-derived reference and AVHRR-derived upscaled AGB. The annual trend of grassland AGB in the TRHR increased by 0.37 g C m−2 (p < 0.05) on average per year during 1982–2018, which was mainly caused by vegetation greening and increased precipitation. This study provided reliable long-term (1982–2018) grassland AGB datasets to monitor the spatiotemporal variation in grassland AGB in the TRHR.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 327 ◽  
Author(s):  
Remy Fieuzal ◽  
Vincent Bustillo ◽  
David Collado ◽  
Gerard Dedieu

The objective of this study is to address the capabilities of multi-temporal optical images to estimate the fine-scale yield variability of wheat, over a study site located in southwestern France. The methodology is based on the Landsat-8 and Sentinel-2 satellite images acquired after the sowing and before the harvest of the crop throughout four successive agricultural seasons, the reflectance constituting the input variables of a statistical algorithm (random forest). The best performances are obtained when the Normalized Difference Vegetation Index (NDVI) is combined with the yield maps collected during the crop rotation, the agricultural season 2014 showing the lower level of performances with a coefficient of determination (R2) of 0.44 and a root mean square error (RMSE) of 8.13 quintals by hectare (q.h−1) (corresponding to a relative error of 12.9%), the three other years being associated with values of R2 close or upper to 0.60 and RMSE lower than 7 q.h−1 (corresponding to a relative error inferior to 11.3%). Moreover, the proposed approach allows estimating the crop yield throughout the agricultural season, by using the successive images acquired from the sowing to the harvest. In such cases, early and accurate yield estimates are obtained three months before the end of the crop cycle. At this phenological stage, only a slight decrease in performance is observed compared to the statistic obtained just before the harvest.


Sign in / Sign up

Export Citation Format

Share Document