scholarly journals Detail Information Prior Net for Remote Sensing Image Pansharpening

2021 ◽  
Vol 13 (14) ◽  
pp. 2800
Author(s):  
Yuchen Xie ◽  
Wei Wu ◽  
Haiping Yang ◽  
Ning Wu ◽  
Ying Shen

Pansharpening, which fuses the panchromatic (PAN) band with multispectral (MS) bands to obtain an MS image with spatial resolution of the PAN images, has been a popular topic in remote sensing applications in recent years. Although the deep-learning-based pansharpening algorithm has achieved better performance than traditional methods, the fusion extracts insufficient spatial information from a PAN image, producing low-quality pansharpened images. To address this problem, this paper proposes a novel progressive PAN-injected fusion method based on superresolution (SR). The network extracts the detail features of a PAN image by using two-stream PAN input; uses a feature fusion unit (FFU) to gradually inject low-frequency PAN features, with high-frequency PAN features added after subpixel convolution; uses a plain autoencoder to inject the extracted PAN features; and applies a structural similarity index measure (SSIM) loss to focus on the structural quality. Experiments performed on different datasets indicate that the proposed method outperforms several state-of-the-art pansharpening methods in both visual appearance and objective indexes, and the SSIM loss can help improve the pansharpened quality on the original dataset.

2021 ◽  
Vol 10 (3) ◽  
pp. 125
Author(s):  
Junqing Huang ◽  
Liguo Weng ◽  
Bingyu Chen ◽  
Min Xia

Analyzing land cover using remote sensing images has broad prospects, the precise segmentation of land cover is the key to the application of this technology. Nowadays, the Convolution Neural Network (CNN) is widely used in many image semantic segmentation tasks. However, existing CNN models often exhibit poor generalization ability and low segmentation accuracy when dealing with land cover segmentation tasks. To solve this problem, this paper proposes Dual Function Feature Aggregation Network (DFFAN). This method combines image context information, gathers image spatial information, and extracts and fuses features. DFFAN uses residual neural networks as backbone to obtain different dimensional feature information of remote sensing images through multiple downsamplings. This work designs Affinity Matrix Module (AMM) to obtain the context of each feature map and proposes Boundary Feature Fusion Module (BFF) to fuse the context information and spatial information of an image to determine the location distribution of each image’s category. Compared with existing methods, the proposed method is significantly improved in accuracy. Its mean intersection over union (MIoU) on the LandCover dataset reaches 84.81%.


2020 ◽  
pp. 35
Author(s):  
M. Campos-Taberner ◽  
F.J. García-Haro ◽  
B. Martínez ◽  
M.A. Gilabert

<p class="p1">The use of deep learning techniques for remote sensing applications has recently increased. These algorithms have proven to be successful in estimation of parameters and classification of images. However, little effort has been made to make them understandable, leading to their implementation as “black boxes”. This work aims to evaluate the performance and clarify the operation of a deep learning algorithm, based on a bi-directional recurrent network of long short-term memory (2-BiLSTM). The land use classification in the Valencian Community based on Sentinel-2 image time series in the framework of the common agricultural policy (CAP) is used as an example. It is verified that the accuracy of the deep learning techniques is superior (98.6 % overall success) to that other algorithms such as decision trees (DT), k-nearest neighbors (k-NN), neural networks (NN), support vector machines (SVM) and random forests (RF). The performance of the classifier has been studied as a function of time and of the predictors used. It is concluded that, in the study area, the most relevant information used by the network in the classification are the images corresponding to summer and the spectral and spatial information derived from the red and near infrared bands. These results open the door to new studies in the field of the explainable deep learning in remote sensing applications.</p>


Author(s):  
Y. Yang ◽  
H. T. Li ◽  
Y. S. Han ◽  
H. Y. Gu

Image segmentation is the foundation of further object-oriented image analysis, understanding and recognition. It is one of the key technologies in high resolution remote sensing applications. In this paper, a new fast image segmentation algorithm for high resolution remote sensing imagery is proposed, which is based on graph theory and fractal net evolution approach (FNEA). Firstly, an image is modelled as a weighted undirected graph, where nodes correspond to pixels, and edges connect adjacent pixels. An initial object layer can be obtained efficiently from graph-based segmentation, which runs in time nearly linear in the number of image pixels. Then FNEA starts with the initial object layer and a pairwise merge of its neighbour object with the aim to minimize the resulting summed heterogeneity. Furthermore, according to the character of different features in high resolution remote sensing image, three different merging criterions for image objects based on spectral and spatial information are adopted. Finally, compared with the commercial remote sensing software eCognition, the experimental results demonstrate that the efficiency of the algorithm has significantly improved, and the result can maintain good feature boundaries.


2018 ◽  
Vol 11 (4) ◽  
pp. 1937-1946
Author(s):  
Nancy Mehta ◽  
Sumit Budhiraja

Multimodal medical image fusion aims at minimizing the redundancy and collecting the relevant information using the input images acquired from different medical sensors. The main goal is to produce a single fused image having more information and has higher efficiency for medical applications. In this paper modified fusion method has been proposed in which NSCT decomposition is used to decompose the wavelet coefficients obtained after wavelet decomposition. NSCT being multidirectional,shift invariant transform provide better results.Guided filter has been used for the fusion of high frequency coefficients on account of its edge preserving property. Phase congruency is used for the fusion of low frequency coefficients due to its insensitivity to illumination contrast hence making it suitable for medical images. The simulated results show that the proposed technique shows better performance in terms of entropy, structural similarity index, Piella metric. The fusion response of the proposed technique is also compared with other fusion approaches; proving the effectiveness of the obtained fusion results.


2020 ◽  
Vol 9 (7) ◽  
pp. 462
Author(s):  
Josephina Paul ◽  
B. Uma Shankar ◽  
Balaram Bhattacharyya

Change detection (CD) using Remote sensing images have been a challenging problem over the years. Particularly in the unsupervised domain it is even more difficult. A novel automatic change detection technique in the unsupervised framework is proposed to address the real challenges involved in remote sensing change detection. As the accuracy of change map is highly dependent on quality of difference image (DI), a set of Normalized difference images and a complementary set of Normalized Ratio images are fused in the Nonsubsampled Contourlet Transform (NSCT) domain to generate high quality difference images. The NSCT is chosen as it is efficient in suppressing noise by utilizing its unique characteristics such as multidirectionality and shift-invariance that are suitable for change detection. The low frequency sub bands are fused by averaging to combine the complementary information in the two DIs, and, the higher frequency sub bands are merged by minimum energy rule, for preserving the edges and salient features in the image. By employing a novel Particle Swarm Optimization algorithm with Leader Intelligence (LIPSO), change maps are generated from fused sub bands in two different ways: (i) single spectral band, and (ii) combination of spectral bands. In LIPSO, the concept of leader and followers has been modified with intelligent particles performing Lévy flight randomly for better exploration, to achieve global optima. The proposed method achieved an overall accuracy of 99.64%, 98.49% and 97.66% on the three datasets considered, which is very high. The results have been compared with relevant algorithms. The quantitative metrics demonstrate the superiority of the proposed techniques over the other methods and are found to be statistically significant with McNemar’s test. Visual quality of the results also corroborate the superiority of the proposed method.


2012 ◽  
Vol 263-266 ◽  
pp. 416-420 ◽  
Author(s):  
Xiao Qing Luo ◽  
Xiao Jun Wu

Enhance spectral fusion quality is the one of most significant targets in the field of remote sensing image fusion. In this paper, a statistical model based fusion method is proposed, which is the improved method for fusing remote sensing images on the basis of the framework of Principal Component Analysis(PCA) and wavelet decomposition-based image fusion. PCA is applied to the source images. In order to retain the entropy information of data, we select the principal component axes based on entropy contribution(ECA). The first entropy component and panchromatic image(PAN) are performed a multiresolution decompositon using wavelet transform. The low frequency subband fused by weighted aggregation approach and high frequency subband fused by statistical model. High resolution multispectral image is then obtained by an inverse wavelet and ECA transform. The experimental results demonstrate that the proposed method can retain the spectral information and spatial information in the fusion of PAN and multi-spectral image(MS).


Author(s):  
Cuizhen Wang ◽  
Zhenxue Chen ◽  
Yan Wang ◽  
Zhifeng Wang

Three-dimensional reconstruction of teeth plays an important role in the operation of living dental implants. However, the tissue around teeth and the noise generated in the process of image acquisition bring a serious impact on the reconstruction results, which must be reduced or eliminated. Combined with the advantages of wavelet transform and bilateral filtering, this paper proposes an image denoising method based on the above methods. The method proposed in this paper not only removes the noise but also preserves the image edge details. The noise in high frequency subbands is denoised using a locally adaptive thresholding and the noise in low frequency subbands is filtered by the bilateral filtering. Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and 3D reconstruction using the iso-surface extraction method are used to evaluate the denoising effect. The experimental results show that the proposed method is better than the wavelet denoising and bilateral filtering, and the reconstruction results meet the requirements of clinical diagnosis.


Author(s):  
P.K. Paul ◽  
P. S. Aithal ◽  
A. Bhuimali ◽  
K.S. Tiwary ◽  
R. Saavedra ◽  
...  

Geo Informatics is an interdisciplinary field responsible for spatial information related activities. Geo Informatics is close to the Geo Information Science, Geo Information System, Remote Sensing, etc. Geo Informatics is a combination of Geo Science and Information Science and here different kinds of IT and Computing tools are being used such as Database Technology, Network Technology, Web Technology, Multimedia Technology, etc in the spatial data management. Remote Sensing is considered as a component of Geo Information Science dedicated in gathering of information on the different types of objects without physical content and applicable in different areas of the geography, survey of land and different type of geo related areas viz. Hydrology, Ecology, Meteorology, Oceanography and Geology, etc. The term remote sensing is also called as GIS & RS due to their relationship and their importance. The applications of the IT in Geography and allied areas are called as Geo Informatics or Geo Information Science. Similarly, the applications and utilization of IT, Information Science and Computing in Environment and allied areas are known as Environmental Informatics or Environmental Information Science. The GIS and Remote Sensing applications in the environment and ecological areas are increasing rapidly and it includes various existing and emerging applications. This paper talks about the applications of the GIS and RS in Environmental Applications and Management.


Author(s):  
H. N. Vidyasaraswathi ◽  
M. C. Hanumantharaju

In many clinical diagnostic measurements, medical images play some significant role but often suffer from various types of noise and low-luminance, which causes some notable changes in overall system accuracy with misdiagnosis rate. To improve the visual appearance of object regions in medical images, image enhancement techniques are used as potential pre-processing techniques. Due to its simplicity and easiness of implementation, histogram equalization is widely preferred in many applications. But due to its mapping function based image transformation during enhancement process affect the biomedical patterns which are essential for diagnosis. To mitigate these issues in medical images, a new method based on gradient computations and Texture Driven based Dynamic histogram equalization (GTDDHE) is accomplished to increase the visual perception. The spatial texture pattern is also included to ensure the texture retention and associated control over its variations during histogram modifications. Experimental results on MRI, CT images, eyes images from medical image datasets and quantitative analysis by PSNR, structural similarity index measurement (SSIM), information entropy (IE) and validated that the proposed method offers improved quality with maximum retention of biomedical patterns across all types of medical images.


2021 ◽  
Vol 10 (10) ◽  
pp. 672
Author(s):  
Suting Chen ◽  
Chaoqun Wu ◽  
Mithun Mukherjee ◽  
Yujie Zheng

Semantic segmentation of remote sensing images (RSI) plays a significant role in urban management and land cover classification. Due to the richer spatial information in the RSI, existing convolutional neural network (CNN)-based methods cannot segment images accurately and lose some edge information of objects. In addition, recent studies have shown that leveraging additional 3D geometric data with 2D appearance is beneficial to distinguish the pixels’ category. However, most of them require height maps as additional inputs, which severely limits their applications. To alleviate the above issues, we propose a height aware-multi path parallel network (HA-MPPNet). Our proposed MPPNet first obtains multi-level semantic features while maintaining the spatial resolution in each path for preserving detailed image information. Afterward, gated high-low level feature fusion is utilized to complement the lack of low-level semantics. Then, we designed the height feature decode branch to learn the height features under the supervision of digital surface model (DSM) images and used the learned embeddings to improve semantic context by height feature guide propagation. Note that our module does not need a DSM image as additional input after training and is end-to-end. Our method outperformed other state-of-the-art methods for semantic segmentation on publicly available remote sensing image datasets.


Sign in / Sign up

Export Citation Format

Share Document