scholarly journals Non-Destructive Biomass Estimation in Mediterranean Alpha Steppes: Improving Traditional Methods for Measuring Dry and Green Fractions by Combining Proximal Remote Sensing Tools

2021 ◽  
Vol 13 (15) ◽  
pp. 2970
Author(s):  
Borja Rodríguez-Lozano ◽  
Emilio Rodríguez-Caballero ◽  
Lisa Maggioli ◽  
Yolanda Cantón

The Mediterranean region is experiencing a stronger warming effect than other regions, which has generated a cascade of negative impacts on productivity, biodiversity, and stability of the ecosystem. To monitor ecosystem status and dynamics, aboveground biomass (AGB) is a good indicator, being a surrogate of many ecosystem functions and services and one of the main terrestrial carbon pools. Thus, accurate methodologies for AGB estimation are needed. This has been traditionally done by performing direct field measurements. However, field-based methods, such as biomass harvesting, are destructive, expensive, and time consuming and only provide punctual information, not being appropriate for large scale applications. Here, we propose a new non-destructive methodology for monitoring the spatiotemporal dynamics of AGB and green biomass (GB) of M. tenacissima L. plants by combining structural information obtained from terrestrial laser scanner (TLS) point clouds and spectral information. Our results demonstrate that the three volume measurement methods derived from the TLS point clouds tested (3D convex hull, voxel, and raster surface models) improved the results obtained by traditional field-based measurements. (Adjust-R2 = 0.86–0.84 and RMSE = 927.3–960.2 g for AGB in OLS regressions and Adjust-R2 = 0.93 and RMSE = 376.6–385.1 g for AGB in gradient boosting regression). Among the approaches, the voxel model at 5 cm of spatial resolution provided the best results; however, differences with the 3D convex hull and raster surface-based models were very small. We also found that by combining TLS AGB estimations with spectral information, green and dry biomass fraction can be accurately measured (Adjust-R2 = 0.65–0.56 and RMSE = 149.96–166.87 g in OLS regressions and Adjust-R2 = 0.96–0.97 and RMSE = 46.1–49.8 g in gradient boosting regression), which is critical in heterogeneous Mediterranean ecosystems in which AGB largely varies in response to climatic fluctuations. Thus, our results represent important progress for the measurement of M. tenacissima L. biomass and dynamics, providing a promising tool for calibration and validation of further studies aimed at developing new methodologies for AGB estimation at ecosystem regional scales.

2021 ◽  
Vol 13 (9) ◽  
pp. 1859
Author(s):  
Xiangyang Liu ◽  
Yaxiong Wang ◽  
Feng Kang ◽  
Yang Yue ◽  
Yongjun Zheng

The characteristic parameters of Citrus grandis var. Longanyou canopies are important when measuring yield and spraying pesticides. However, the feasibility of the canopy reconstruction method based on point clouds has not been confirmed with these canopies. Therefore, LiDAR point cloud data for C. grandis var. Longanyou were obtained to facilitate the management of groves of this species. Then, a cloth simulation filter and European clustering algorithm were used to realize individual canopy extraction. After calculating canopy height and width, canopy reconstruction and volume calculation were realized using six approaches: by a manual method and using five algorithms based on point clouds (convex hull, CH; convex hull by slices; voxel-based, VB; alpha-shape, AS; alpha-shape by slices, ASBS). ASBS is an innovative algorithm that combines AS with slices optimization, and can best approximate the actual canopy shape. Moreover, the CH algorithm had the shortest run time, and the R2 values of VCH, VVB, VAS, and VASBS algorithms were above 0.87. The volume with the highest accuracy was obtained from the ASBS algorithm, and the CH algorithm had the shortest computation time. In addition, a theoretical but preliminarily system suitable for the calculation of the canopy volume of C. grandis var. Longanyou was developed, which provides a theoretical reference for the efficient and accurate realization of future functional modules such as accurate plant protection, orchard obstacle avoidance, and biomass estimation.


2021 ◽  
Author(s):  
Yupan Zhang ◽  
Yuichi Onda ◽  
Hiroaki Kato ◽  
Xinchao Sun ◽  
Takashi Gomi

<p>Understory vegetation is an important part of evapotranspiration from forest floor. Forest management changes the forest structure and then affects the understory vegetation biomass (UVB). Quantitative measurement and estimation of  UVB is a step cannot be ignored in the study of forest ecology and forest evapotranspiration. However, large-scale biomass measurement and estimation is challenging. In this study, Structure from Motion (SfM) was adopted simultaneously at two different layers in a plantation forest made by Japanese cedar and Japanese cypress to reconstruct forest structure from understory to above canopy: i) understory drone survey in a 1.1h sub-catchment to generate canopy height model (CHM) based on dense point clouds data derived from a manual low-flying drone under the canopy; ii) Above-canopy drone survey in whole catchment (33.2 ha) to compute canopy openness data based on point clouds of canopy derived from an autonomous flying drone above the canopy. Combined with actual biomass data from field harvesting to develop regression models between the CHM and UVB, which was then used to map spatial distribution of  UVB in sub-catchment. The relationship between UVB and canopy openness data was then developed by overlap analysis. This approach yielded high resolution understory over catchment scale with a point cloud density of more than 20 points/cm<sup>2</sup>. Strong coefficients of determination (R-squared = 0.75) of the cubic model supported prediction of UVB from CHM, the average UVB was 0.82kg/m<sup>2</sup> and dominated by low ferns. The corresponding forest canopy openness in this area was 42.48% on average. Overlap analysis show no significant interactions between them in a cubic model with weak predictive power (R-squared < 0.46). Overall, we reconstructed the multi-layered structure of the forest and provided models of UVB. Understory survey has high accuracy for biomass measurement, but it’s inherently difficult to estimate UVB only based on canopy openness result.</p>


2018 ◽  
Vol 8 (2) ◽  
pp. 20170048 ◽  
Author(s):  
M. I. Disney ◽  
M. Boni Vicari ◽  
A. Burt ◽  
K. Calders ◽  
S. L. Lewis ◽  
...  

Terrestrial laser scanning (TLS) is providing exciting new ways to quantify tree and forest structure, particularly above-ground biomass (AGB). We show how TLS can address some of the key uncertainties and limitations of current approaches to estimating AGB based on empirical allometric scaling equations (ASEs) that underpin all large-scale estimates of AGB. TLS provides extremely detailed non-destructive measurements of tree form independent of tree size and shape. We show examples of three-dimensional (3D) TLS measurements from various tropical and temperate forests and describe how the resulting TLS point clouds can be used to produce quantitative 3D models of branch and trunk size, shape and distribution. These models can drastically improve estimates of AGB, provide new, improved large-scale ASEs, and deliver insights into a range of fundamental tree properties related to structure. Large quantities of detailed measurements of individual 3D tree structure also have the potential to open new and exciting avenues of research in areas where difficulties of measurement have until now prevented statistical approaches to detecting and understanding underlying patterns of scaling, form and function. We discuss these opportunities and some of the challenges that remain to be overcome to enable wider adoption of TLS methods.


Author(s):  
N. Tilly ◽  
D. Hoffmeister ◽  
H. Schiedung ◽  
C. Hütt ◽  
J. Brands ◽  
...  

Over the last decades, the role of remote sensing gained in importance for monitoring applications in precision agriculture. A key factor for assessing the development of crops during the growing period is the actual biomass. As non-destructive methods of directly measuring biomass do not exist, parameters like plant height are considered as estimators. In this contribution, first results of multitemporal surveys on a maize field with a terrestrial laser scanner are shown. The achieved point clouds are interpolated to generate Crop Surface Models (CSM) that represent the top canopy. These CSMs are used for visualizing the spatial distribution of plant height differences within the field and calculating plant height above ground with a high resolution of 1 cm. In addition, manual measurements of plant height were carried out corresponding to each TLS campaign to verify the results. The high coefficient of determination (R² = 0.93) between both measurement methods shows the applicability of the presented approach. The established regression model between CSM-derived plant height and destructively measured biomass shows a varying performance depending on the considered time frame during the growing period. This study shows that TLS is a suitable and promising method for measuring plant height of maize. Moreover, it shows the potential of plant height as a non-destructive estimator for biomass in the early growing period. However, challenges are the non-linear development of plant height and biomass over the whole growing period.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Tianyu Yu ◽  
Wenjian Ni ◽  
Zhiyu Zhang ◽  
Qinhuo Liu ◽  
Guoqing Sun

Canopy cover is an important parameter affecting forest succession, carbon fluxes, and wildlife habitats. Several global maps with different spatial resolutions have been produced based on satellite images, but facing the deficiency of reliable references for accuracy assessments. The rapid development of unmanned aerial vehicle (UAV) equipped with consumer-grade camera enables the acquisition of high-resolution images at low cost, which provides the research community a promising tool to collect reference data. However, it is still a challenge to distinguish tree crowns and understory green vegetation based on the UAV-based true color images (RGB) due to the limited spectral information. In addition, the canopy height model (CHM) derived from photogrammetric point clouds has also been used to identify tree crowns but limited by the unavailability of understory terrain elevations. This study proposed a simple method to distinguish tree crowns and understories based on UAV visible images, which was referred to as BAMOS for convenience. The central idea of the BAMOS was the synergy of spectral information from digital orthophoto map (DOM) and structural information from digital surface model (DSM). Samples of canopy covers were produced by applying the BAMOS method on the UAV images collected at 77 sites with a size of about 1.0 km2 across Daxing’anling forested area in northeast of China. Results showed that canopy cover extracted by the BAMOS method was highly correlated to visually interpreted ones with correlation coefficient (r) of 0.96 and root mean square error (RMSE) of 5.7%. Then, the UAV-based canopy covers served as references for assessment of satellite-based maps, including MOD44B Version 6 Vegetation Continuous Fields (MODIS VCF), maps developed by the Global Land Cover Facility (GLCF) and by the Global Land Analysis and Discovery laboratory (GLAD). Results showed that both GLAD and GLCF canopy covers could capture the dominant spatial patterns, but GLAD canopy cover tended to miss scattered trees in highly heterogeneous areas, and GLCF failed to capture non-tree areas. Most important of all, obvious underestimations with RMSE about 20% were easily observed in all satellite-based maps, although the temporal inconsistency with references might have some contributions.


Author(s):  
O. Diaz de Leon ◽  
M. Nassirian ◽  
C. Todd ◽  
R. Chowdhury

Abstract Integration of circuits on semiconductor devices with resulting increase in pin counts is driving the need for improvements in packaging for functionality and reliability. One solution to this demand is the Flip- Chip concept in Ultra Large Scale Integration (ULSI) applications [1]. The flip-chip technology is based on the direct attach principle of die to substrate interconnection.. The absence of bondwires clearly enables packages to become more slim and compact, and also provides higher pin counts and higher-speeds [2]. However, due to its construction, with inherent hidden structures the Flip-Chip technology presents a challenge for non-destructive Failure Analysis (F/A). The scanning acoustic microscope (SAM) has recently emerged as a valuable evaluation tool for this purpose [3]. C-mode scanning acoustic microscope (C-SAM), has the ability to demonstrate non-destructive package analysis while imaging the internal features of this package. Ultrasonic waves are very sensitive, particularly when they encounter density variations at surfaces, e.g. variations such as voids or delaminations similar to air gaps. These two anomalies are common to flip-chips. The primary issue with this package technology is the non-uniformity of the die attach through solder ball joints and epoxy underfill. The ball joints also present defects as open contacts, voids or cracks. In our acoustic microscopy study packages with known defects are considered. It includes C-SCAN analysis giving top views at a particular package interface and a B-SCAN analysis that provides cross-sectional views at a desired point of interest. The cross-section analysis capability gives confidence to the failure analyst in obtaining information from a failing area without physically sectioning the sample and destroying its electrical integrity. Our results presented here prove that appropriate selection of acoustic scanning modes and frequency parameters leads to good reliable correlation between the physical defects in the devices and the information given by the acoustic microscope.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2111
Author(s):  
Bo-Wei Zhao ◽  
Zhu-Hong You ◽  
Lun Hu ◽  
Zhen-Hao Guo ◽  
Lei Wang ◽  
...  

Identification of drug-target interactions (DTIs) is a significant step in the drug discovery or repositioning process. Compared with the time-consuming and labor-intensive in vivo experimental methods, the computational models can provide high-quality DTI candidates in an instant. In this study, we propose a novel method called LGDTI to predict DTIs based on large-scale graph representation learning. LGDTI can capture the local and global structural information of the graph. Specifically, the first-order neighbor information of nodes can be aggregated by the graph convolutional network (GCN); on the other hand, the high-order neighbor information of nodes can be learned by the graph embedding method called DeepWalk. Finally, the two kinds of feature are fed into the random forest classifier to train and predict potential DTIs. The results show that our method obtained area under the receiver operating characteristic curve (AUROC) of 0.9455 and area under the precision-recall curve (AUPR) of 0.9491 under 5-fold cross-validation. Moreover, we compare the presented method with some existing state-of-the-art methods. These results imply that LGDTI can efficiently and robustly capture undiscovered DTIs. Moreover, the proposed model is expected to bring new inspiration and provide novel perspectives to relevant researchers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucia Di Iorio ◽  
Manon Audax ◽  
Julie Deter ◽  
Florian Holon ◽  
Julie Lossent ◽  
...  

AbstractMonitoring the biodiversity of key habitats and understanding the drivers across spatial scales is essential for preserving ecosystem functions and associated services. Coralligenous reefs are threatened marine biodiversity hotspots that are challenging to monitor. As fish sounds reflect biodiversity in other habitats, we unveiled the biogeography of coralligenous reef sounds across the north-western Mediterranean using data from 27 sites covering 2000 km and 3 regions over a 3-year period. We assessed how acoustic biodiversity is related to habitat parameters and environmental status. We identified 28 putative fish sound types, which is up to four times as many as recorded in other Mediterranean habitats. 40% of these sounds are not found in other coastal habitats, thus strongly related to coralligenous reefs. Acoustic diversity differed between geographical regions. Ubiquitous sound types were identified, including sounds from top-predator species and others that were more specifically related to the presence of ecosystem engineers (red coral, gorgonians), which are key players in maintaining habitat function. The main determinants of acoustic community composition were depth and percentage coverage of coralligenous outcrops, suggesting that fish-related acoustic communities exhibit bathymetric stratification and are related to benthic reef assemblages. Multivariate analysis also revealed that acoustic communities can reflect different environmental states. This study presents the first large-scale map of acoustic fish biodiversity providing insights into the ichthyofauna that is otherwise difficult to assess because of reduced diving times. It also highlights the potential of passive acoustics in providing new aspects of the correlates of biogeographical patterns of this emblematic habitat relevant for monitoring and conservation.


2021 ◽  
Vol 13 (8) ◽  
pp. 1595
Author(s):  
Chunhua Li ◽  
Lizhi Zhou ◽  
Wenbin Xu

Wetland vegetation aboveground biomass (AGB) directly indicates wetland ecosystem health and is critical for water purification, carbon cycle, and biodiversity conservation. Accurate AGB estimation is essential for the monitoring and supervision of ecosystems, especially in seasonal floodplain wetlands. This paper explored the capability of spectral and texture features from the Sentinel-2 Multispectral Instrument (MSI) for modeling grassland AGB using random forest (RF) and extreme gradient boosting (XGBoost) algorithms in Shengjin Lake wetland (a Ramsar site). We use five-fold cross-validation to verify the model effectiveness. The results indicated that the RF and XGBoost models had a robust and efficient performance (with root mean square error (RMSE) of 126.571 g·m−2 and R2 of 0.844 for RF, RMSE of 112.425 g·m−2 and R2 of 0.869 for XGBoost), and the XGBoost models, by contrast, performed better. Both traditional and red-edge vegetation indices (VIs) obtained satisfactory results of AGB estimation (RMSE = 127.936 g·m−2, RMSE = 125.879 g·m−2 in XGBoost models, respectively), with the red-edge VIs contributed more to the AGB models. Moreover, we selected eight gray-level co-occurrence matrix (GLCM) textures calculated by four processing window sizes using the mean value of four offsets, and further analyzed the results of three analysis sets. Textures derived from traditional and red-edge bands using a 7 × 7 window size performed better in biomass estimation. This finding suggested that textures derived from the traditional bands were as important as the red-edge bands. The introduction of textures moderately improved the accuracy of modeling AGB, whereas the use of textures alo ne was not satisfactory. This research demonstrated that using the Sentinel-2 MSI and the two ensemble algorithms is an effective method for long-term dynamic monitoring and assessment of grass AGB in seasonal floodplain wetlands, which can support sustainable management and carbon accounting of wetland ecosystems.


Sign in / Sign up

Export Citation Format

Share Document