scholarly journals HYDROPT: An Open-Source Framework for Fast Inverse Modelling of Multi- and Hyperspectral Observations from Oceans, Coastal and Inland Waters

2021 ◽  
Vol 13 (15) ◽  
pp. 3006
Author(s):  
Tadzio Holtrop ◽  
Hendrik Jan Van Der Woerd

Biomass estimation of multiple phytoplankton groups from remote sensing reflectance spectra requires inversion models that go beyond the traditional band-ratio techniques. To achieve this objective retrieval models are needed that are rooted in radiative transfer (RT) theory and exploit the full spectral information for the inversion. HydroLight numerical solutions of the radiative transfer equation are well suited to support this inversion. We present a fast and flexible Python framework for forward and inverse modelling of multi- and hyperspectral observations, by further extending the formerly developed HydroLight Optimization (HYDROPT) algorithm. Computation time of the inversion is greatly reduced using polynomial interpolation of the radiative transfer solutions, while at the same time maintaining high accuracy. Additional features of HYDROPT are specification of sensor viewing geometries, solar zenith angle and multiple optical components with distinct inherent optical properties (IOP). Uncertainty estimates and goodness-of-fit metrics are simultaneously derived for the inversion routines. The pursuit to retrieve multiple phytoplankton groups from remotely sensed observations illustrates the need for such flexible retrieval algorithms that allow for the configuration of IOP models characteristic for the region of interest. The updated HYDROPT framework allows for more than three components to be fitted, such as multiple phytoplankton types with distinct absorption and backscatter characteristics. We showcase our model by evaluating the performance of retrievals from simulated Rrs spectra to obtain estimates of 3 phytoplankton size classes in addition to CDOM and detrital matter. Moreover, we demonstrate HYDROPTs capability for the inter-comparison of retrievals using different sensor band settings including coupling to full spectral coverage, as would be needed for NASA’s PACE mission. The HYDROPT framework is now made available as an open-source Python package.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 641
Author(s):  
Wang Huang ◽  
Jianjun Yang ◽  
Jan Sladek ◽  
Vladimir Sladek ◽  
Pihua Wen

The modulus of elasticity of some materials changes under tensile and compressive states is simulated by constructing a typical material nonlinearity in a numerical analysis in this paper. The meshless Finite Block Method (FBM) has been developed to deal with 3D semi-infinite structures in the bimodular materials in this paper. The Lagrange polynomial interpolation is utilized to construct the meshless shape function with the mapping technique to transform the irregular finite domain or semi-infinite physical solids into a normalized domain. A shear modulus strategy is developed to present the nonlinear characteristics of bimodular material. In order to verify the efficiency and accuracy of FBM, the numerical results are compared with both analytical and numerical solutions provided by Finite Element Method (FEM) in four examples.


Author(s):  
M. M. Khader ◽  
Ibrahim Al-Dayel

The propose of this paper is to introduce and investigate a highly accurate technique for solving the fractional Logistic and Ricatti differential equations of variable-order. We consider these models with the most common nonsingular Atangana–Baleanu–Caputo (ABC) fractional derivative which depends on the Mittag–Leffler kernel. The proposed numerical technique is based upon the fundamental theorem of the fractional calculus as well as the Lagrange polynomial interpolation. We satisfy the efficiency and the accuracy of the given procedure; and study the effect of the variation of the fractional-order [Formula: see text] on the behavior of the solutions due to the presence of ABC-operator by evaluating the solution with different values of [Formula: see text]. The results show that the given procedure is an easy and efficient tool to investigate the solution for such models. We compare the numerical solutions with the exact solution, thereby showing excellent agreement which we have found by applying the ABC-derivatives. We observe the chaotic solutions with some fractional-variable-order functions.


2016 ◽  
Vol 12 (S324) ◽  
pp. 347-350
Author(s):  
Pauli Pihajoki ◽  
Antti Rantala ◽  
Peter H. Johansson

AbstractWe discuss the problem of polarized radiative transfer in general relativity. We present a set of equations suitable for solving the problem numerically for the case of an arbitrary space-time metric, and show numerical solutions to example problems. The solutions are computed with a new ray-tracing code, Arcmancer, developed by the authors.


1986 ◽  
Vol 108 (2) ◽  
pp. 271-276 ◽  
Author(s):  
M. P. Mengu¨c¸ ◽  
R. Viskanta

A solution of the radiative transfer equation for an axisymmetric cylindrical enclosure containing radiatively participating gases and particles is presented. Nonhomogeneities of the radiative properties of the medium as well as of the radiation characteristics of the boundaries are allowed for, and the boundaries are assumed to be diffusely emitting and reflecting. The scattering phase function is represented by the delta-Eddington approximation to account for highly forward scattering by particulates. The model for radiative transfer is based on the P1 and P3-spherical harmonics approximations. Numerical solutions of model equations are obtained using finite-difference as well as finite-element schemes.


Author(s):  
Tatiana Stankova ◽  
Veselka Gyuleva ◽  
Dimitar Dimitrov ◽  
Hristina Hristova ◽  
Ekaterina Andonova

Species of the genus Paulownia have been introduced to Bulgaria since the beginning of the XXthcentury and their multipurpose uses - as ornamental trees, for wood and biomass production- have been tested ever since. We present a study, which examines the early growth of four Paulowniaclones at southern locations in Bulgaria and derives biometric models for dendromass estimationof juvenile Paulownia trees.The data originated from two experimental plantations established on nursery land using one-yearoldin vitro propagated plant material. Forty six, 1 to 3 year-old saplings from two clones of P. tomentosaand two P. elongata × P. fortunei hybrids were sampled. Their stem biomass was modeledas a function of the breast height tree diameter and total tree height or the stem diameter aloneand a set of goodness-of-fit criteria was applied to select the most adequate among the 29 testedformulations. The regression models were fitted in log-transformed form to the logarithm of thestem biomass and MM correction factor for bias was applied to the back-transformed predictiondata. Two allometric relationships were derived, which adequately assess stem dendromass ofyoung Paulownia sp. from easily measurable tree characteristics. Both models are applicable forstem biomass estimation of juvenile Paulownia trees of diameter up to 5 cm and total height upto 3.5 m.


2021 ◽  
Vol 1 (5) ◽  
pp. e1539
Author(s):  
Paulo Rocha ◽  
Felipe Pinto Marinho ◽  
Victor Oliveira Santos ◽  
Stéphano Praxedes Mendonça ◽  
Maria Eugênia Vieira da Silva

Topics related to the modeling of turbulent flow feature significant relevance in several areas, especially in engineering, since the vast majority of flows present in the design of devices and systems are characterized to be turbulent. A vastly applied tool for the analysis of such flows is the use of numerical simulations based on turbulence models. Thus, this work aims to evaluate the performance of several turbulence models when applied to classic problems of fluid mechanics and heat transfer, already extensively validated by empirical procedures. The OpenFOAM open source software was used, being highly suitable for obtaining numerical solutions to problems of fluid mechanics involving complex geometries. The problems for the evaluation of turbulence models selected were: two-dimensional cavity, Pitz-Daily, air flow over an airfoil, air flow over the Ahmed blunt body and the problem of natural convection between parallel plates. The solution to such problems was achieved by utilizing several Reynolds Averaged  Equations (RANS) turbulence models, namely: k-ε, k-ω, Lam-Bremhorst k-ε, k-ω SST, Lien-Leschziner k-ε, Spalart-Allmaras, Launder-Sharma k-ε, renormalization group (RNG) k-ε. The results obtained were compared to those found in the literature which were empirically obtained, thus allowing the assessment of the strengths and weaknesses of the turbulence modeling applied in each problem.


Author(s):  
Javier Pacheco-Labrador ◽  
Tarek S. El-Madany ◽  
Christiaan van der Tol ◽  
M. Pilar Martin ◽  
Rosario Gonzalez-Cascon ◽  
...  

AbstractSemi-arid grasslands and other ecosystems combine green and senescent leaves featuring different biochemical and optical properties, as well as functional traits. Knowing how these properties vary is necessary to understand the functioning of these ecosystems. However, differences between green and senescent leaves are not considered in recent models representing radiative transfer, heat, water and CO2 exchange such as the Soil-Canopy Observation of Photosynthesis and Energy fluxes (SCOPE). Neglecting the contribution of senescent leaves to the optical and thermal signal of vegetation limits the possibilities to use remote sensing information for studying these ecosystems; as well as neglecting their lack of photosynthetic activity increases uncertainty in the representation of ecosystem fluxes. In this manuscript we present senSCOPE as a step towards a more realistic representation of mixed green and senescent canopies. senSCOPE is a modified version of SCOPE model that describes a canopy combining green and senescent leaves with different properties and function. The model relies on the same numerical solutions than SCOPE, but exploits the linear nature of the scattering coefficients to combine optical properties of both types of leaf. Photosynthesis and transpiration only take place in green leaves; and different green and senescent leaf temperatures are used to close the energy balance. Radiative transfer of sun-induced fluorescence (SIF) and absorptance changes induced by the xanthophyll cycle action are also simulated. senSCOPE is evaluated against SCOPE both using synthetic simulations, forward simulations based on observations in a Mediterranean tree-grass ecosystem, and inverting dataset of ground measurements of reflectance factors, SIF, thermal radiance and gross primary production on a heterogeneous and partly senescent Mediterranean grassland. Results show that senSCOPE outputs vary quite linearly with the fraction of green leaf area, whereas SCOPE does not respond linearly to the effective leaf properties, calculated as the weighted average of green and senescent leaf parameters. Inversion results and pattern-oriented model evaluation show that senSCOPE improves the estimation of some parameters, especially chlorophyll content, with respect SCOPE retrievals during the dry season. Nonetheless, inaccurate knowledge of the optical properties of senescent matter still complicates model inversion. senSCOPE brings new opportunities for the monitoring of canopies mixing green and senescent leaves, and for improving the characterization of the optical properties of senescent material.


2021 ◽  
Author(s):  
Ji Young Jang ◽  
Jang Hun Kim

Abstract IntroductionPrevious comparison studies regarding two types of transportation, helicopter (HEMS) versus ground emergency medical services (GEMS), have shown underlying heterogeneity as these options have completely different routes and consequent times with reference to one patient. To compare the two types of transportation on a case-by-case basis, we analyzed the retrospectively reviewed HEMS and predicted GEMS data using an open-source navigation software.MethodsPatients transferred by military HEMS from 2016 to 2019 were retrospectively enrolled. The HEMS records on the time of notification, injury point and destination address, and time required were reviewed. The GEMS data on distance and the predicted time required were acquired using open-source social navigation systems. Comparison analyses between the two types of transportation were conducted. Further, linear logistic regression analyses were performed on the distance and time of the two options.ResultsA total of 183 patients were enrolled. There was no statistical difference (p=0.3021) in the distance between the two types of transportation, and the HEMS time was significantly shorter than that of GEMS (61.31 vs. 116.92 minutes, p<0.001). The simple linear curves for HEMS and GEMS were separately secured, and two graphs presented the statistical significance (p) as well as reasonable goodness-of-fit (R2). In general, the HEMS graph demonstrates a more gradual slope and narrow distribution compared to that of GEMS. ConclusionIdeally, HEMS is identified as a better transportation modality because it has a shorter transportation time (56 minutes saved) and a low possibility of potential time delays (larger R2).Running tileHelicopter vs. navigation-based ground ambulance


Author(s):  
Jianchao Zhang ◽  
Jun Wang ◽  
Jiangchuan Niu ◽  
Yufei Hu

The forced vibration of a single-degree-of-freedom piecewise linear system containing fractional time-delay feedback was investigated. The approximate analytical solution of the system was obtained by employing an averaging method. A frequency response equation containing time delay was obtained by studying a steady-state solution. The stability conditions of the steady-state solution, the amplitude–frequency results, and the numerical solutions of the system under different time-delay parameters were compared. Comparison results indicated a favorable goodness of fit between the two parameters and revealed the correctness of the analytical solution. The effects of the time-delay and fractional parameters, piecewise stiffness, and piecewise gap on the principal resonance and bifurcation of the system were emphasized. Results showed that fractional time delay occurring in the form of equivalent linear dampness and stiffness under periodic variations in the system and influenced the vibration characteristic of the system. Moreover, piecewise stiffness and gap induced the nonlinear characteristic of the system under certain parameters.


Sign in / Sign up

Export Citation Format

Share Document