scholarly journals New Evidence to Support Zephyria Tholus as a Composite Volcano on Mars

2021 ◽  
Vol 13 (19) ◽  
pp. 3891
Author(s):  
Le Wang ◽  
Jiannan Zhao ◽  
Jun Huang ◽  
Long Xiao

Zephyria Tholus has been proposed to be a composite volcano, however, detailed geomorphological study was not carried out due to limited high-resolution remote sensing data. Here we use MOLA, THEMIS, CTX and HiRISE data to conduct topographical and geomorphological analysis of Zephyria Tholus. We identify extensive valleys and troughs on the flank, which are sector collapse or glacio-fluvial in origin. The valleys and troughs indicate coexistence of different erosion resistance materials, along with the observed solid lava outcrops. There are also layered materials identified on the wall of the largest valley. In addition, perched craters are identified on the top depression and flanks of Zephyria Tholus, indicating the presence of ice-rich layer. We conducted crater size-frequency distribution of the caldera and found the absolute model age is 3.74 (+0.03, −0.04) Ga. The geomorphology evidence and chronology result support the composite volcano nature of Zephyria Tholus, and indicate the magma volatile content in the Aeolis region in Noachian is more than 0.15 wt% if the atmosphere paleo-pressure was similar to present Mars.

2018 ◽  
Vol 5 (6) ◽  
pp. 258-267 ◽  
Author(s):  
Christian Riedel ◽  
Gregory Michael ◽  
Thomas Kneissl ◽  
Csilla Orgel ◽  
Harald Hiesinger ◽  
...  

1976 ◽  
Vol 31 ◽  
pp. 227-231
Author(s):  
D. A. Morrison ◽  
E. Zinner

AbstractCrater size frequency distributions vary to a degree which probably cannot be explained by variations in lunar surface orientation of the crater detectors or changes in micrometeoroid flux. Questions of sample representativity suggest that high ratios of small to large craters of micrometeoroids (e.g., a million 1.0 micron craters for each 500 micron crater) should be the most reliable. We obtain a flux for particles producing 0.1 micron diameter craters of approximately 300 per cm2 per steradian per year. We observe no anisotropy in the submicron particle flux between the plane of the ecliptic and the normal in the direction of lunar north. No change in flux over a 106 year period is indicated by our data.


2017 ◽  
Vol 2 (1) ◽  
pp. 26 ◽  
Author(s):  
Kuldeep Pareta ◽  
Upasana Pareta

In the present study, an attempt has been made to study the quantitative geomorphological analysis and hydrological characterization of 95 micro-watersheds (MWS) of Baira river watershed in Himachal Pradesh, India with an area of 425.25 Km2. First time in the world, total 173 morphometric parameters have been generated in a single watershed using satellite remote sensing data (i.e. IRS-P6 ResourceSAT-1 LISS-III, LandSAT-7 ETM+, and LandSAT-8 PAN & OLI merge data), digital elevation models (i.e. IRS-P5 CartoSAT-1 DEM, ASTER DEM data), and soI topographical maps of 1: 50,000 scale. The ninety-five micro-watersheds (MWS) of Baira river watershed have been prioritized through the morphometric analysis of different morphometric parameters (i.e. drainage network, basin geometry, drainage texture analysis, and relief characterizes ). The study has concurrently established the importance of geomorphometry as well as the utility of remote sensing and GIS technology for hydrological characterization of the watershed and there for better resource and environmental managements.


The form of the lunar impact crater size-frequency distribution is discussed. Latest results on the lunar cratering chronology in the first 1.5 Ga after its formation are reviewed. It is shown that most cratering arguments speak against an extraordinary high flux increase (‘cataclysm’) at ca . 4 Ga ago. From age determination by crater frequency measurements, it is concluded that the dominant process of the formation of light (Cayley) plains is not deposition of basin ejecta but an endogenic one.


2021 ◽  
Vol 13 (8) ◽  
pp. 1515
Author(s):  
Zhen Xu ◽  
Dijun Guo ◽  
Jianzhong Liu

Chang’E-5 is the first lunar sample return mission of China. The spacecraft was landed in the northwest of the Procellarum KREEP Terrane (43.0576°N, 308.0839°E) on 1 December 2020 and returned 1731 g samples from a previously unvisited region. The landing area has been proposed as one of the youngest mare basalt units of the Moon and holds important information of lunar thermal evolution and chronology. However, the absolute model ages estimated in previous studies are quite different, ranging from 2.07 Ga to 1.21 Ga. Such significant difference may be caused by (1) different crater counting areas, (2) different crater diameter ranges, (3) effects of secondary craters, and (4) biases in crater identification. Moreover, the accurate landing site was unknown and the ages were estimated over the Eratosthenian-aged mare unit (Em4) instead. In light of the above unsatisfactory conditions, this study seeks to establish a standard crater size-frequency distribution of the CE-5 landing site. We derived the concentrations of FeO and TiO2 to map out the pure basaltic areas where external ejecta deposits are negligible and thus secondary craters are rare. Based on the geochemistry of basaltic ejecta excavated by fresh craters in the mare unit, the FeO concentration threshold for mapping pure basaltic areas is 17.2 wt.%. The morphologically flat subunits in the pure basaltic areas were selected for crater identification and age dating to exclude the contamination of external ejecta to the best as we could. In the Chang’E-5 sampling site subunit, we detected 313 craters with a diameter greater than 100 m and derived the absolute model age as 1.49−0.084+0.084 Ga. The craters identified in all pure basaltic subunits of Em4 gave the model age of 1.41−0.028+0.027 Ga. As least affected by secondary craters, the crater size-frequency distribution of the sample-collected pure basaltic subunit can provide important constraints for lunar cratering chronology function in combination with isotopic age of returned samples.


2018 ◽  
Vol 36 (2) ◽  
pp. 938
Author(s):  
N. Voulgaris ◽  
I. Parcharidis ◽  
M. Pahoula ◽  
E. Pirlis

The development of a specialized Geographical Information System aiming at the better understanding of the relation between tectonics, seismicity and geothermal potential of Lesbos Island is discussed in the present paper. The development of this system was based on the processing and analysis of satellite images in order to identify both tectonic and thermal anomalies for further correlation with available vector and raster data. For this purpose a database including topology, geology, tectonics, seismicity and geothermy, was created. This data set derived from digitizing the topographic and geological maps of HAGS and IGME, from the analysis of the satellite image and from bibliography. As a result of the data processing there were indications about new evidence concerning the tectonics and the geothermy of Lesbos Island.


2021 ◽  
Author(s):  
Sylvain Breton ◽  
Lu Pan ◽  
Cathy Quantin-Nataf ◽  
Clément Brustel ◽  
Jessica Flahaut

<p>Impact craters are often used to date planetary surfaces, the density of crater increasing with the exposure age of the surface. However, some geologic event, such as lava flows, do not totally “reset” the crater clock. Indeed, larger craters, rather than being totally recovered by the lava flow will be only partially filled.</p><p>In that case, the crater size frequency distribution differs from cratering models. In order to better describe crater populations, additional parameters can be included. To this purpose we build crater size and depth frequency distributions that offers a snapshot of the current degradation state of the population.</p><p>We used cratering models to interpret crater size and depth frequency distributions in terms of crater infilling rates. Using both global crater database and more local high resolution crater maps, we estimated crater obliteration rates on various Martian volcanic provinces.</p><p>Our method proven efficient to track activity of the main Martian volcanic provinces. Resurfacing rates reach several thousands of m/Gy. Pic activity differs from provinces. Syrtis and Hesperia are the oldest with the highest and oldest observed rates around 3.7 Gy. The activity of those provinces quickly decreases reaching few hundreds of m/Gy around 3.4 Gy. During Hesperian, Tharsis is the most active surface of Mars with high resurfacing until 3.3 Gy. Finally, our result shows an increase of resurfacing, reaching few hundreds of m/Gy in Amazonis planitia from 2 Gy to present.</p>


2019 ◽  
Vol 627 ◽  
pp. A12
Author(s):  
N. L. Rossignoli ◽  
R. P. Di Sisto ◽  
M. Zanardi ◽  
A. Dugaro

Context. The small (≤135 km mean radius) satellites of Saturn are closely related to its rings and together they constitute a complex dynamical system where formation and destruction mechanisms compete against each other. The Cassini-Huygens mission provided high-resolution images of the surfaces of these satellites and therefore allowed for the calculation of observational crater counts. Aims. We model the cratering process by Centaur objects on the small Saturnian satellites, and compare our results with the observational crater counts obtained from the Voyager and Cassini missions. Methods. Using a theoretical model previously developed we calculate the crater production on these satellites considering two slopes of the size-frequency distribution (SFD) for the smaller objects of the Centaur population and compare our results with the available observations. In addition, we consider the case of catastrophic collisions between these satellites and Centaur objects and calculate the age of formation of those satellites that suffer one or more disruptions. Results. In general we find that the observed crater distributions are best modeled by the crater size distribution corresponding to the s2 = 3.5 index of the SFD of impactors with diameters smaller than 60 km. However, for crater diameters D ≲ 3–8 km (which correspond to impactor diameters d ~ 0.04–0.15 km), the observed distributions become flatter and deviate from our results, which may evidence processes of erosion and/or crater saturation at small crater sizes or a possible break in the SFD of impactors at d ~ 0.04–0.15 km to a much shallower differential slope of approximately − 1.5. Our results suggest that Pan, Daphnis, Atlas, Aegaeon, Methone, Anthe, Pallene, Calypso, and Polydeuces suffered one or more catastrophic collisions over the age of the solar system, the younger being associated to arcs with ages of ~108 yr. We have also calculated surface ages for the satellites, which indicate ongoing resurfacing processes.


Sign in / Sign up

Export Citation Format

Share Document