scholarly journals RMCSat: An F10.7 Solar Flux Index CubeSat Mission

2021 ◽  
Vol 13 (23) ◽  
pp. 4754
Author(s):  
Heather Taylor ◽  
Melissa Vreugdenburg ◽  
L. Sangalli ◽  
Ron Vincent

The F10.7 solar flux index is a measure of microwave solar emissions at a wavelength of 10.7 cm or 2800 MHz. It is widely used in thermosphere and ionosphere models as an indicator of solar activity and is recorded at only one terrestrial observatory in Penticton, Canada during daylight hours. The lack of geographical and temporal coverage of F10.7 measurements and no external redundancy to the existing system has led to the development of the RMCSat mission, which seeks to demonstrate the feasibility of collecting microwave solar flux emissions from a space-based platform. RMCSat is the first CubeSat mission by the Royal Military College of Canada. It offers a training environment for personnel in space mission analysis and design, satellite assembly, integration and testing, and satellite operations. This paper introduces the mission concept and preliminary design of a space-based solution that captures solar density flux measurements during each orbit as the Sun passes through the boresight of the primary payload antenna. In addition to two channels recording the 2800 MHz frequency (2785 MHz and 2815 MHz), a third channel records 2695 MHz using the same calibration standard to determine if the United States Radio Solar Telescope Network (RSTN) could be leveraged to supplement the existing F10.7 solar flux measurements and improve solar flux approximations. The RMCSat mission, satellite design, and system budgets are demonstrated here as being viable. Future design considerations pertain to the payload antennas and achievable launch orbits.

2021 ◽  
pp. 875529302098196
Author(s):  
Siamak Sattar ◽  
Anne Hulsey ◽  
Garrett Hagen ◽  
Farzad Naeim ◽  
Steven McCabe

Performance-based seismic design (PBSD) has been recognized as a framework for designing new buildings in the United States in recent years. Various guidelines and standards have been developed to codify and document the implementation of PBSD, including “ Seismic Evaluation and Retrofit of Existing Buildings” (ASCE 41-17), the Tall Buildings Initiative’s Guidelines for Performance-Based Seismic Design of Tall Buildings (TBI Guidelines), and the Los Angeles Tall Buildings Structural Design Council’s An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region (LATBSDC Procedure). The main goal of these documents is to regularize the implementation of PBSD for practicing engineers. These documents were developed independently with experts from varying backgrounds and organizations and consequently have differences in several degrees from basic intent to the details of the implementation. As the main objective of PBSD is to ensure a specified building performance, these documents would be expected to provide similar recommendations for achieving a given performance objective for new buildings. This article provides a detailed comparison among each document’s implementation of PBSD for reinforced concrete buildings, with the goal of highlighting the differences among these documents and identifying provisions in which the designed building may achieve varied performance depending on the chosen standard/guideline. This comparison can help committees developing these documents to be aware of their differences, investigate the sources of their divergence, and bring these documents closer to common ground in future cycles.


Author(s):  
Erica Generoso Lima ◽  
Mariana Tarifa ◽  
Rodrigo Dias ◽  
Artur Robson Cutolo ◽  
Pedro Kukulka de Albuquerque ◽  
...  

2020 ◽  
Vol 20 (10) ◽  
pp. 2042016
Author(s):  
A. Abdullahi ◽  
Y. Wang ◽  
S. Bhattacharya

Offshore wind turbines (OWTs) have emerged as a reliable source of renewable energy, witnessing massive deployment across the world. While there is a wide range of support foundations for these structures, the monopile and jacket are most utilized so far; their deployment is largely informed by water depths and turbine ratings. However, the recommended water depth ranges are often violated, leading to cross-deployment of the two foundation types. This study first investigates the dynamic implication of this practice to incorporate the findings into future analysis and design of these structures. Detailed finite element (FE) models of Monopile and Jacket supported OWTs are developed in the commercial software, ANSYS. Nonlinear soil springs are used to simulate the soil-structure interactions (SSI) and the group effects of the jacket piles are considered by using the relevant modification factors. Modal analyzes of the fixed and flexible-base cases are carried out, and natural frequencies are chosen as the comparison parameters throughout the study. Second, this study constructs a few-parameters SSI model for the two FE models developed above, which aims to use fewer variables in the FE model updating process without compromising its simulation quality. Maximum lateral soil resistance and soil depths are related using polynomial equations, this replaces the standard nonlinear soil spring model. The numerical results show that for the same turbine rating and total height, jacket supported OWTs generally have higher first-order natural frequencies than the monopile supported OWTs, while the reverse is true for the second-order vibration modes, for both fixed and flexible foundations. This contributes to future design considerations of OWTs. On the other hand, with only two parameters, the proposed SSI model has achieved the same accuracy as that using the standard model with seven parameters. It has the potential to become a new SSI model, especially for the identification of soil properties through the model updating process.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2012 ◽  
Author(s):  
Santiago Lemos-Cano ◽  
James McCalley

This paper proposes and implements a long-term deterministic capacity expansion model for the co-optimization of electric and natural gas infrastructures. It determines the required investments in generation units, transmission lines and pipelines for meeting future demands, while representing electricity and natural gas flows using DC Power Flow and Weymouth equations, respectively. A Mixed Integer Nonlinear Programming (MINLP) problem is developed, from which a linearized version is derived. A 26 node integrated gas-electric system for the Eastern Region of the United States is used to demonstrate the model’s capabilities. Results show that the model provides an accurate operational representation of the integrated system, and, therefore, enhances the expansion planning process.


1979 ◽  
Vol 83 ◽  
pp. 297-298
Author(s):  
C. T. Bolton

A coordinated campaign of radio, optical, and x-ray observations of the bright x-ray source Cygnus X-1 took place August 7–21, 1977 under sponsorship of Commission 42 of the International Astronomical Union. Radio flux measurements, optical spectra, photometry, and polarimetry were obtained during this period by ten groups from Canada, Great Britain, the Soviet Union, and the United States. The x-ray flux was monitored continuously by the SAS-3 satellite between August 11.0 and 17.0.


1995 ◽  
Vol 117 (3) ◽  
pp. 424-431
Author(s):  
A. Saith ◽  
P. F. Norton ◽  
V. M. Parthasarathy

The Ceramic Stationary Gas Turbine (CSGT) Program has utilized the SPSLIFE computer code to evaluate the preliminary design of ceramic components. The CSGT program is being performed under the sponsorship of the United States Department of Energy, Office of Industrial Technology, to improve the performance of stationary gas turbines in cogeneration through the selective replacement of hot section components with ceramic parts. Preliminary design evaluation and life assessment results are presented here for the following components: (1) Stage 1 turbine blade, (2) Stage 1 turbine nozzle, and (3) combustor inner liner. From the results of the analysis, recommendations are made for improving the life and reliability of the components. All designs were developed in Phase I (preliminary design) of the CSGT program and will be optimized in Phase II (detail design) of the program.


Author(s):  
Arun Saith ◽  
Paul F. Norton ◽  
Vijay M. Parthasarathy

The Ceramic Stationary Gas Turbine (CSGT) Program has utilized the SPSLIFE computer code to evaluate the preliminary design of ceramic components. The CSGT program is being performed under the sponsorship of the United States Department of Energy, Office of Industrial Technology, to improve the performance of stationary gas turbines in cogeneration through the selective replacement of hot section components with ceramic parts. Preliminary design evaluation and life assessment results are presented here for the following components: (1) Stage 1 Turbine Blade, (2) Stage 1 Turbine Nozzle, and (3) Combustor Inner Liner. From the results of the analysis, recommendations are made for improving the life and reliability of the components. All designs were developed in Phase I (preliminary design) of the CSGT program and will be optimized in Phase II (detail design) of the program.


As the need for breeder technology in the United States has receded into the more distant future, it has become clear that an alternative justification must be found for continued priority development of sodium-cooled fast-reactor technology. Both the modular high-temperature gas-cooled reactor and the liquid-metal-cooled reactor (LMR) have technical attributes that provide more simple and transparent solutions to some of the problems confronting the nuclear enterprise, in addition to their potential for greater market penetration, resource extension, and waste management improvements. For the past five years, the LMR development programme in the United States has attempted to use these technical attributes in more innovative ways to provide more elegant solutions for the practical commercial application of nuclear energy. This paper discusses the reasons and status of the technological approaches that have evolved to support these policy considerations. For the LMR, efforts are focused on four interrelated development thrusts: (1) increased use of standardization; (2) passive safety approaches; (3) modularity; and (4) improved fuel cycle approaches. The paper also discusses the status of related design activities being conducted by the General Electric Company and a team of U. S. vendors.


2016 ◽  
Vol 8 (2) ◽  
pp. 252-255 ◽  
Author(s):  
Rami A. Ahmed ◽  
Jennifer Frey ◽  
Aimee K. Gardner ◽  
James A. Gordon ◽  
Rachel Yudkowsky ◽  
...  

ABSTRACT  In the past few years, there has been rapid growth in the number of simulation fellowships for physicians in the United States and Canada, with the objective of producing faculty with expertise and leadership training in medical simulation. Relatively little is known about the collective content and structure of these new fellowship opportunities.Background  We sought to identify a common set of core curricular elements among existing simulation fellowships and to obtain demographic background information on participants and leadership.Objective  We designed a web-based survey and circulated it to simulation fellowship directors in the United States and Canada. The questions explored aspects of the fellowship curriculum. A grounded theory approach was used to qualitatively analyze fellowship goals and objectives.Methods  Of the 29 program directors surveyed, 23 responded (79%). The most commonly listed goals and objectives were to increase skills in simulation curriculum development, simulation operations and training environment setup, research, educational theory, administration, and debriefing. The majority of the responding fellowship directors (17 of 22, 77%) indicated that a set of consensus national guidelines would benefit their fellowship program.Results  Simulation fellowships are experiencing a period of rapid growth. Development of a common set of program guidelines is a widely shared objective among fellowship directors.Conclusions


Author(s):  
Timothy Sullivan ◽  
Kwok Siong Teh

There are currently over 500,000 people with upper extremity amputations living in the United States. Among this population—despite the introduction of advanced myoelectric technology—body-powered hand prosthetics remain the hand prosthetic of choice because they are inexpensive, durable, and are easier and cheaper to maintain than myoelectric prosthetics. Yet, body-powered prosthetics tend to have less functionality than myoelectric prosthetics because their output is often limited to a single function—voluntary opening (VO) or voluntary closing (VC). Although these functions serve the same purpose—to grasp an object—they are executed in opposite ways, catering to different body movements, hand actions, and rest positions. In reality, a human hand is more adequately modeled by a VO/VC hybrid mechanism than a standalone VO or VC mechanism. There is therefore a critical need to develop prosthetics with combined VO and VC functions in order to augment their capabilities and to more closely mimic the human hand. This paper presents the design, fabrication, and analysis of a combined, hybrid VO and VC prosthetic hand that is simplistic and electronics-free. To realize a hybrid VO and VC prosthetic hand, we designed and fabricated an easy push-pull switching mechanism for changing between VO and VC and investigated the efficacy of this switching mechanism in response to the wide range of force transmission necessitated by the VC and VO functions. The mechanical switching mechanism is activated with a force of 1 to 1.5N. The mechanism itself is constructed using a system of gears that allow for the direction of force to be changed, effectively providing the foundation for which VO and VC functions can exist in a single prosthetic. This switching mechanism could potentially be used in combination with a number of different prehensor types, catering to a wide range of users. We used a 3.5″ TRS-style prehensor for our prototype and designed the switch to apply a 21 N force while in VO mode and up to 100 N while in VC mode. In our design, VO and VC modes offer characteristics that are identical to existing VO and VC designs, with a few exceptions. These exceptions include an increase in weight, as low as 12% energy loss in VC mode and 9% loss in VO mode due to gears, more complex mechanics, larger required space, and a higher spring force in VC mode. Future design improvements will be discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document