scholarly journals Evaluation of the Performance of Time-Series Sentinel-1 Data for Discriminating Rock Units

2021 ◽  
Vol 13 (23) ◽  
pp. 4824
Author(s):  
Yi Lu ◽  
Changbao Yang ◽  
Qigang Jiang

The potential use of time-series Sentinel-1 synthetic aperture radar (SAR) data for rock unit discrimination has never been explored in previous studies. Here, we employed time-series Sentinel-1 data to discriminate Dananhu formation, Xinjiang group, Granite, Wusu group, Xishanyao formation, and Diorite in Xinjiang, China. Firstly, the temporal variation of the backscatter metrics (backscatter coefficient and coherence) from April to October derived from Sentinel-1, was analyzed. Then, the significant differences of the time-series SAR metrics among different rock units were checked using the Kruskal–Wallis rank sum test and Tukey’s honest significant difference test. Finally, random forest models were used to discriminate rock units. As for the input features, there were four groups: (1) time-series backscatter metrics, (2) single-date backscatter metrics, (3) time-series backscatter metrics at VV, and (4) VH channel. In each feature group, there were three sub-groups: backscatter coefficient, coherence, and combined use of backscatter coefficient and coherence. Our results showed that time-series Sentinel-1 data could improve the discrimination accuracy by roughly 9% (from 55.4% to 64.4%), compared to single-date Sentinel-1 data. Both VV and VH polarization provided comparable results. Coherence complements the backscatter coefficient when discriminating rock units. Among the six rock units, the Granite and Xinjiang group can be better differentiated than the other four rock units. Though the result still leaves space for improvement, this study further demonstrates the great potential of time-series Sentinel-1 data for rock unit discrimination.

Proceedings ◽  
2019 ◽  
Vol 32 (1) ◽  
pp. 19
Author(s):  
Skach ◽  
Stewart ◽  
Healey

In this paper, we introduce a new modality for capturing body postures and social behaviour. Vice versa, we propose a new application area for on-body textile sensors. We have developed “smart trousers” with embedded textile pressure sensors that allow for classification of a large variety of postural movements as well as interactional states. Random Forest models are used to investigate those. Here, we give an overview of the research conducted and discuss potential use cases of the presented design.


2021 ◽  
Vol 13 (22) ◽  
pp. 4641
Author(s):  
Jinlong Fan ◽  
Pierre Defourny ◽  
Xiaoyu Zhang ◽  
Qinghan Dong ◽  
Limin Wang ◽  
...  

Agricultural landscapes are characterized by diversity and complexity, which makes crop mapping at a regional scale a top priority for different purposes such as administrative decisions and farming management. Project 32194 of the Dragon 4 Program was implemented to meet the requirements of crop mapping, with the specific objective to develop suitable approaches for precise crop mapping with combined uses of European and Chinese high- and medium-resolution satellite images. Two sub-projects were involved in the project. The first was to focus on the use of time series high-resolution satellite data, including Sentinel-2 (S2, European satellite data) and Gaofen-1 (GF-1, Chinese satellite data), due to their similar spectral bands for Earth observation, while the second was to focus on medium-resolution data sources, i.e., the European Project for On-Board Autonomy–Vegetation (PROBA-V) and Chinese Fengyun-3 Medium Resolution Spectral Imager (FY-3 MERSI) satellite data, also due to their similar spectral channels. The approach of the European Space Agency (ESA) Sent2Agri project for crop mapping was adapted in the first sub-project and applied to the Yellow River irrigated district (YERID) of Ningxia in northwest China in order to assess its ability to accurately identify crop types in China. The goal of the second sub-project was to explore the potential of both European and Chinese medium-resolution satellite data for crop assessment in a large area. Methods to handle the data and retrieve the required information for the precise crop mapping were developed in the study, including the adaptation of the ESA approach to GF-1 data and the application of algorithms for classification. A scheme for the validation of the crop mapping was developed in the study. The results of implementing the scheme to the YERID in Ningxia indicated that the overall accuracies of crop mapping with S2 and GF-1 can be high, up to 94–97%, and the mapping had an accuracy of 88% with the PROBA-V and FY3B-MERSI data. The very high accuracy suggests the possibility of precise crop mapping with the combined use of time series high- and medium-resolution satellite data when suitable approaches are chosen to handle the data for the classification of crop types.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 109
Author(s):  
Ashima Malik ◽  
Megha Rajam Rao ◽  
Nandini Puppala ◽  
Prathusha Koouri ◽  
Venkata Anil Kumar Thota ◽  
...  

Over the years, rampant wildfires have plagued the state of California, creating economic and environmental loss. In 2018, wildfires cost nearly 800 million dollars in economic loss and claimed more than 100 lives in California. Over 1.6 million acres of land has burned and caused large sums of environmental damage. Although, recently, researchers have introduced machine learning models and algorithms in predicting the wildfire risks, these results focused on special perspectives and were restricted to a limited number of data parameters. In this paper, we have proposed two data-driven machine learning approaches based on random forest models to predict the wildfire risk at areas near Monticello and Winters, California. This study demonstrated how the models were developed and applied with comprehensive data parameters such as powerlines, terrain, and vegetation in different perspectives that improved the spatial and temporal accuracy in predicting the risk of wildfire including fire ignition. The combined model uses the spatial and the temporal parameters as a single combined dataset to train and predict the fire risk, whereas the ensemble model was fed separate parameters that were later stacked to work as a single model. Our experiment shows that the combined model produced better results compared to the ensemble of random forest models on separate spatial data in terms of accuracy. The models were validated with Receiver Operating Characteristic (ROC) curves, learning curves, and evaluation metrics such as: accuracy, confusion matrices, and classification report. The study results showed and achieved cutting-edge accuracy of 92% in predicting the wildfire risks, including ignition by utilizing the regional spatial and temporal data along with standard data parameters in Northern California.


2012 ◽  
Vol 8 (2) ◽  
pp. 44-63 ◽  
Author(s):  
Baoxun Xu ◽  
Joshua Zhexue Huang ◽  
Graham Williams ◽  
Qiang Wang ◽  
Yunming Ye

The selection of feature subspaces for growing decision trees is a key step in building random forest models. However, the common approach using randomly sampling a few features in the subspace is not suitable for high dimensional data consisting of thousands of features, because such data often contains many features which are uninformative to classification, and the random sampling often doesn’t include informative features in the selected subspaces. Consequently, classification performance of the random forest model is significantly affected. In this paper, the authors propose an improved random forest method which uses a novel feature weighting method for subspace selection and therefore enhances classification performance over high-dimensional data. A series of experiments on 9 real life high dimensional datasets demonstrated that using a subspace size of features where M is the total number of features in the dataset, our random forest model significantly outperforms existing random forest models.


Sign in / Sign up

Export Citation Format

Share Document