scholarly journals A Remote Sensing Image Destriping Model Based on Low-Rank and Directional Sparse Constraint

2021 ◽  
Vol 13 (24) ◽  
pp. 5126
Author(s):  
Xiaobin Wu ◽  
Hongsong Qu ◽  
Liangliang Zheng ◽  
Tan Gao ◽  
Ziyu Zhang

Stripe noise is a common condition that has a considerable impact on the quality of the images. Therefore, stripe noise removal (destriping) is a tremendously important step in image processing. Since the existing destriping models cause different degrees of ripple effects, in this paper a new model, based on total variation (TV) regularization, global low rank and directional sparsity constraints, is proposed for the removal of vertical stripes. TV regularization is used to preserve details, and the global low rank and directional sparsity are used to constrain stripe noise. The directional and structural characteristics of stripe noise are fully utilized to achieve a better removal effect. Moreover, we designed an alternating minimization scheme to obtain the optimal solution. Simulation and actual experimental data show that the proposed model has strong robustness and is superior to existing competitive destriping models, both subjectively and objectively.

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 5051 ◽  
Author(s):  
Deyin Liu ◽  
Chengwu Liang ◽  
Zhiming Zhang ◽  
Lin Qi ◽  
Brian C. Lovell

Image set matching (ISM) has attracted increasing attention in the field of computer vision and pattern recognition. Some studies attempt to model query and gallery sets under a joint or collaborative representation framework, achieving impressive performance. However, existing models consider only the competition and collaboration among gallery sets, neglecting the inter-instance relationships within the query set which are also regarded as one important clue for ISM. In this paper, inter-instance relationships within the query set are explored for robust image set matching. Specifically, we propose to represent the query set instances jointly via a combined dictionary learned from the gallery sets. To explore the commonality and variations within the query set simultaneously to benefit the matching, both low rank and class-level sparsity constraints are imposed on the representation coefficients. Then, to deal with nonlinear data in real scenarios, the`kernelized version is also proposed. Moreover, to tackle the gross corruptions mixed in the query set, the proposed model is extended for robust ISM. The optimization problems are solved efficiently by employing singular value thresholding and block soft thresholding operators in an alternating direction manner. Experiments on five public datasets demonstrate the effectiveness of the proposed method, comparing favorably with state-of-the-art methods.


2021 ◽  
Vol 13 (4) ◽  
pp. 827
Author(s):  
Fang Yang ◽  
Xin Chen ◽  
Li Chai

Hyperspectral image (HSI) is easily corrupted by different kinds of noise, such as stripes, dead pixels, impulse noise, Gaussian noise, etc. Due to less consideration of the structural specificity of stripes, many existing HSI denoising methods cannot effectively remove the heavy stripes in mixed noise. In this paper, we classify the noise on HSI into three types: sparse noise, stripe noise, and Gaussian noise. The clean image and different types of noise are treated as independent components. In this way, the image denoising task can be naturally regarded as an image decomposition problem. Thanks to the structural characteristic of stripes and the low-rank property of HSI, we propose to destripe and denoise the HSI by using stripe and spectral low-rank matrix recovery and combine it with the global spatial-spectral TV regularization (SSLR-SSTV). By considering different properties of different HSI ingredients, the proposed method separates the original image from the noise components perfectly. Both simulation and real image denoising experiments demonstrate that the proposed method can achieve a satisfactory denoising result compared with the state-of-the-art methods. Especially, it outperforms the other methods in the task of stripe noise removal visually and quantitatively.


In this paper, we discussed about the imperfect items. In practice items may get damaged due to production or transportation conditions. Each lot receives some imperfect items. This model also considers the effects of business strategies such as optimal order size of raw materials, production rates and unit production costs, and idle time in different areas on the cooperation of marketing systems. The model can be used in industries such as textiles and footwear, chemicals, food. We develop an inventory model based on imperfect products and shortages. We consider demand is constant and continuous. Purpose of this study is not only to find the retailer`s optimal replenishment policies but also to minimize the total average cost. Finally, a numerical example is presented to illustrate the proposed model and sensitivity analysis of the optimal solution concerning parameters is carried out using the Mathematica 10.0 software.


2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.


Author(s):  
Abdullah Genc

Abstract In this paper, a new empirical path loss model based on frequency, distance, and volumetric occupancy rate is generated at the 3.5 and 4.2 GHz in the scope of 5G frequency bands. This study aims to determine the effect of the volumetric occupancy rate on path loss depending on the foliage density of the trees in the pine forest area. Using 4.2 GHz and the effect of the volumetric occupancy rate contributes to the literature in terms of novelty. Both the reference measurements to generate a model and verification measurements to verify the proposed models are conducted in three different regions of the forest area with double ridged horn antennas. These regions of the artificial forest area consist of regularly sorted and identical pine trees. Root mean square error (RMSE) and R-squared values are calculated to evaluate the performance of the proposed model. For 3.5 and 4.2 GHz, while the RMSEs are 3.983 and 3.883, the values of R-squared are 0.967 and 0.963, respectively. Additionally, the results are compared with four path loss models which are commonly used in the forest area. The proposed one has the best performance among the other models with values 3.98 and 3.88 dB for 3.5 and 4.2 GHz.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3615
Author(s):  
Adelaide Cerveira ◽  
Eduardo J. Solteiro Pires ◽  
José Baptista

Green energy has become a media issue due to climate changes, and consequently, the population has become more aware of pollution. Wind farms are an essential energy production alternative to fossil energy. The incentive to produce wind energy was a government policy some decades ago to decrease carbon emissions. In recent decades, wind farms were formed by a substation and a couple of turbines. Nowadays, wind farms are designed with hundreds of turbines requiring more than one substation. This paper formulates an integer linear programming model to design wind farms’ cable layout with several turbines. The proposed model obtains the optimal solution considering different cable types, infrastructure costs, and energy losses. An additional constraint was considered to limit the number of cables that cross a walkway, i.e., the number of connections between a set of wind turbines and the remaining wind farm. Furthermore, considering a discrete set of possible turbine locations, the model allows identifying those that should be present in the optimal solution, thereby addressing the optimal location of the substation(s) in the wind farm. The paper illustrates solutions and the associated costs of two wind farms, with up to 102 turbines and three substations in the optimal solution, selected among sixteen possible places. The optimal solutions are obtained in a short time.


2020 ◽  
Vol 11 (1) ◽  
pp. 102-111
Author(s):  
Em Poh Ping ◽  
J. Hossen ◽  
Wong Eng Kiong

AbstractLane departure collisions have contributed to the traffic accidents that cause millions of injuries and tens of thousands of casualties per year worldwide. Due to vision-based lane departure warning limitation from environmental conditions that affecting system performance, a model-based vehicle dynamics framework is proposed for estimating the lane departure event by using vehicle dynamics responses. The model-based vehicle dynamics framework mainly consists of a mathematical representation of 9-degree of freedom system, which permitted to pitch, roll, and yaw as well as to move in lateral and longitudinal directions with each tire allowed to rotate on its axle axis. The proposed model-based vehicle dynamics framework is created with a ride model, Calspan tire model, handling model, slip angle, and longitudinal slip subsystems. The vehicle speed and steering wheel angle datasets are used as the input in vehicle dynamics simulation for predicting lane departure event. Among the simulated vehicle dynamic responses, the yaw acceleration response is observed to provide earlier insight in predicting the future lane departure event compared to other vehicle dynamics responses. The proposed model-based vehicle dynamics framework had shown the effectiveness in estimating lane departure using steering wheel angle and vehicle speed inputs.


Sign in / Sign up

Export Citation Format

Share Document