scholarly journals Fusing Observational, Satellite Remote Sensing and Air Quality Model Simulated Data to Estimate Spatiotemporal Variations of PM2.5 Exposure in China

2017 ◽  
Vol 9 (3) ◽  
pp. 221 ◽  
Author(s):  
Tao Xue ◽  
Yixuan Zheng ◽  
Guannan Geng ◽  
Bo Zheng ◽  
Xujia Jiang ◽  
...  
Author(s):  
Tao Xue ◽  
Yixuan Zheng ◽  
Guannan Geng ◽  
Bo Zheng ◽  
Xujia Jiang ◽  
...  

Estimating ground surface PM2.5 with fine spatiotemporal resolution is a critical technique for exposure assessments in epidemiological studies of its health risks. Previous studies have utilized monitoring, satellite remote sensing or air quality modeling data to evaluate the spatiotemporal variations of PM2.5 concentrations, but such studies rarely combined these data simultaneously. We develop a three-stage model to fuse PM2.5 monitoring data, satellite-derived aerosol optical depth (AOD) and community multi-scale air quality (CMAQ) simulations together and apply it to estimate daily PM2.5 at a spatial resolution of 0.1˚ over China. Performance of the three-stage model is evaluated using a cross-validation (CV) method step by step. CV results show that the finally fused estimator of PM2.5 is in good agreement with the observational data (RMSE = 23.00 μg/m^3 and R2 = 0.72) and outperforms either AOD-retrieved PM2.5 (R2 = 0.62) or CMAQ simulations (R2 = 0.51). According to step-specific CVs, in data fusion, AOD-retrieved PM2.5 plays a key role to reduce mean bias, whereas CMAQ provides all-spacetime-covered predictions, which avoids sampling bias caused by non-random incompleteness in satellite-derived AOD. Our fused products are more capable than either CMAQ simulations or AOD-based estimates in characterizing the polluting procedure during haze episodes and thus can support both chronic and acute exposure assessments of ambient PM2.5. Based on the products, averaged concentration of annual exposure to PM2.5 was 55.75 μg/m3, while averaged count of polluted days (PM2.5 > 75 μg/m3) was 81, across China during 2014. Fused estimates will be publicly available for future health-related studies.


2005 ◽  
Vol 2005 (3) ◽  
pp. 1393-1414
Author(s):  
Kuo-Liang Lai ◽  
Janet Kremer ◽  
Susan Sciarratta ◽  
R. Dwight Atkinson ◽  
Tom Myers

2021 ◽  
Vol 13 (10) ◽  
pp. 5685
Author(s):  
Panbo Guan ◽  
Hanyu Zhang ◽  
Zhida Zhang ◽  
Haoyuan Chen ◽  
Weichao Bai ◽  
...  

Under the Air Pollution Prevention and Control Action Plan (APPCAP) implemented, China has witnessed an air quality change during the past five years, yet the main influence factors remain relatively unexplored. Taking the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions as typical cluster cities, the Weather Research Forecasting (WRF) and Comprehensive Air Quality Model with Extension (CAMx) were introduced to demonstrate the meteorological and emission contribution and PM2.5 flux distribution. The results showed that the PM2.5 concentration in BTH and YRD significantly declined with a descend ratio of −39.6% and −28.1%, respectively. For the meteorological contribution, those regions had a similar tendency with unfavorable conditions in 2013–2015 (contribution concentration 1.6–3.8 μg/m3 and 1.1–3.6 μg/m3) and favorable in 2016 (contribution concentration −1.5 μg/m3 and −0.2 μg/m3). Further, the absolute value of the net flux’s intensity was positively correlated with the degree of the favorable/unfavorable weather conditions. When it came to emission intensity, the total net inflow flux increased, and the outflow flux decreased significantly across the border with the emission increasing. In short: the aforementioned results confirmed the effectiveness of the regional joint emission control and provided scientific support for the proposed effective joint control measures.


1993 ◽  
Vol 134 (1-3) ◽  
pp. 1-7 ◽  
Author(s):  
Ana Isabel A. Miranda ◽  
Miguel S. Conceição ◽  
Carlos S. Borrego

2017 ◽  
Author(s):  
Jianlin Hu ◽  
Xun Li ◽  
Lin Huang ◽  
Qi Ying ◽  
Qiang Zhang ◽  
...  

Abstract. Accurate exposure estimates are required for health effects analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used tools to provide detailed information of spatial distribution, chemical composition, particle size fractions, and source origins of pollutants. The accuracy of CTMs' predictions in China is largely affected by the uncertainties of public available emission inventories. The Community Multi-scale Air Quality model (CMAQ) with meteorological inputs from the Weather Research and Forecasting model (WRF) were used in this study to simulate air quality in China in 2013. Four sets of simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 with the four inventories generally meet the criteria of model performance, but difference exists in different pollutants and different regions among the inventories. Ensemble predictions were calculated by linearly combining the results from different inventories under the constraint that sum of the squared errors between the ensemble results and the observations from all the cities was minimized. The ensemble annual concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFE) of the ensemble predicted annual PM2.5 at the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25–−0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual 1-hour peak O3 (O3-1 h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1 h. The study demonstrates that ensemble predictions by combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories and the results are publicly available for future health effects studies.


Sign in / Sign up

Export Citation Format

Share Document