scholarly journals Wuhan Surface Subsidence Analysis in 2015–2016 Based on Sentinel-1A Data by SBAS-InSAR

2017 ◽  
Vol 9 (10) ◽  
pp. 982 ◽  
Author(s):  
Lv Zhou ◽  
Jiming Guo ◽  
Jiyuan Hu ◽  
Jiangwei Li ◽  
Yongfeng Xu ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qingsong Du ◽  
Guoyu Li ◽  
Yu Zhou ◽  
Mingtang Chai ◽  
Dun Chen ◽  
...  

The fragile habitat of alpine mining areas can be greatly affected by surface disturbances caused by mining activities, particularly open-pit mining activities, which greatly affect the periglacial environment. SBAS-InSAR technology enables the processing of SAR images to obtain highly accurate surface deformation information. This paper applied SBAS-InSAR technology to obtain three years of surface subsidence information based on the 89-scene Sentinel-1A SLC products, covering a mining area (tailings and active areas) in the Tianshan Mountains and its surroundings from 25th December 2017 to 2nd January 2021. The data were adopted to analyze the characteristics of deformation in the study region and the mining areas, and the subsidence accumulation was compared with field GNSS observation results to verify its accuracy. The results showed that the study area settled significantly, with a maximum settlement rate of −44.80 mm/a and a maximum uplift rate of 28.04 mm/a. The maximum settlement and accumulation of the whole study area over the three-year period were −129.39 mm and 60.49 mm, respectively. The mining area had a settlement value of over 80 mm over the three years. Significantly, the settlement rates of the tailings and active areas were −35 mm/a and −40 mm/a, respectively. Debris accumulation in the eastern portion of the tailings and active areas near the mountain was serious, with accumulation rates of 25 mm/a and 20 mm/a, respectively, and both had accumulation amounts of around 70 mm. For mine tailing pile areas with river flows, the pile locations and environmental restoration should be appropriately adjusted at a later stage. For gravel pile areas, regular cleaning should be carried out, especially around the mining site and at the tunnel entrances and exits, and long-term deformation monitoring of these areas should be carried out to ensure safe operation of the mining site. The SBAS-InSAR measurements were able to yield deformations with high accuracies over a wide area and cost less human and financial resources than the GNSS measurement method. Furthermore, the measurement results were more macroscopic, with great application value for surface subsidence monitoring in alpine areas.


Sensors ◽  
2016 ◽  
Vol 16 (9) ◽  
pp. 1495 ◽  
Author(s):  
Jiming Guo ◽  
Lv Zhou ◽  
Chaolong Yao ◽  
Jiyuan Hu

2021 ◽  
Vol 13 (21) ◽  
pp. 4365
Author(s):  
Yang Chen ◽  
Shengwen Yu ◽  
Qiuxiang Tao ◽  
Guolin Liu ◽  
Luyao Wang ◽  
...  

The accuracy of InSAR in monitoring mining surface subsidence is always a matter of concern for surveyors. Taking a mining area in Shandong Province, China, as the study area, D-InSAR and SBAS-InSAR were used to obtain the cumulative subsidence of a mining area over a multi-period, which was compared with the mining progress of working faces. Then dividing the mining area into regions with different magnitudes of subsidence according to the actual mining situation, the D-InSAR-, SBAS-InSAR- and leveling-monitored results of different subsidence magnitudes were compared and the Pearson correlation coefficients between them were calculated. The results show that InSAR can accurately detect the location, range, spatial change trend, and basin edge information of the mining subsidence. However, InSAR has insufficient capability to detect the subsidence center, having high displacement rates, and its monitored results are quite different from those of leveling. To solve this problem, the distance from each leveling point to the subsidence center was calculated according to the layout of the rock movement observation line. Besides, the InSAR-monitored error at each leveling point was also calculated. Then, according to the internal relationship between these distances and corresponding InSAR-monitored errors, a correction model of InSAR-monitored results was established. Using this relationship to correct the InSAR-monitored results, results consistent with the actual situation were obtained. This method effectively makes up for the deficiency of InSAR in monitoring the subsidence center of a mining area.


2021 ◽  
Vol 69 (1) ◽  
pp. 5
Author(s):  
Zhou Wentao ◽  
Zhang Wenjun ◽  
Geng Shihua ◽  
Deng Yuntao ◽  
Liu Xianglong

In this study, the surface subsidence caused by underground mining is monitored by the technique of SBAS-InSAR. The second west mining area of Longshou mine, Jinchang Jinchuan Cu-Ni sulfide mine, Gansu province, is selected as the research area for the experiment. The 29 scene elevation rail Sentinel-1A image data from 2019.03-2020.3 are analyzed for the sequence analysis of the SBAS-InSAR. The vertical subsidence rate and cumulative subsidence results of the surface sequence of the mining area are obtained. According to the study, the minimum error of cumulative sedimentation between SBAS-InSAR and D-InSAR is 0.1mm, the maximum error is 21.37mm, and the median error is ±6.65mm. The minimum error of cumulative settlement between SBAS-InSAR and levelling is 0.66mm, the maximum is 23.74mm, and the median error is ±10.79mm. The results show that the application of the SBAS-InSAR technique in the monitoring of surface subsidence in the mining area is reliable, which provides an important basis for the subsequent safe mining in the mining area.


2015 ◽  
Vol 1 (1) ◽  
pp. 13-20
Author(s):  
Hamid Reza Samadi ◽  
Mohammad Reza Samadi

Due to the development of cities as well as rapid population growth, urban traffic is increasing nowadays. Hence, to improve traffic flow, underground structures such as metro, especially in metropolises, are inevitable. This paper is a research on the twin tunnels Of Isfahan's metro between Shariaty station and Azadi station from the North towards the South. In this study, simultaneous drilling of subway's twin tunnels is simulated by means of Finite Difference Method (FDM) and FLAC 3D software. Moreover, the lowest distance between two tunnels is determined in a way that the Law of Super Position could be utilized to manually calculate the amount of surface subsidence, resulted by drilling two tunnels, by employing the results of the analysis of single tunnels without using simultaneous examination and simulation. In this paper, this distance is called "effective distance". For this purpose, first, the optimum dimensions of the model is chosen and then, five models with optimum dimensions will be analyzed separately, each of which in three steps. The results of analyses shows that the proportions (L/D) greater than or equal 2.80, the Law of Super Position can be applied for prediction of surface subsidence, caused by twin tunnels' construction


2017 ◽  
Vol 8 ◽  
pp. 187-194
Author(s):  
Yu.V. Posyl'nyy ◽  
◽  
A.V. Vyal'tsev ◽  
V.V. Popov ◽  
F.I. Yagodkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document