scholarly journals A Multiwell Electrochemical Biosensor for Real-Time Monitoring of the Behavioural Changes of Cells in Vitro

Sensors ◽  
2010 ◽  
Vol 10 (4) ◽  
pp. 3732-3740 ◽  
Author(s):  
Daman J. Adlam ◽  
David E. Woolley
2020 ◽  
Vol 11 (2) ◽  
pp. 425-432 ◽  
Author(s):  
Shegufta Farazi ◽  
Fan Chen ◽  
Henry Foster ◽  
Raelene Boquiren ◽  
Shelli R. McAlpine ◽  
...  

A pH responsive pMAA nanogel that demonstrates high loading capacity and rapid intracellular delivery of hydrophilic peptides.


2021 ◽  
Vol 900 ◽  
pp. 115674
Author(s):  
Muthaiah Annalakshmi ◽  
Sakthivel Kumaravel ◽  
T.S.T. Balamurugan ◽  
Shen-Ming Chen ◽  
Ju-Liang He

2015 ◽  
Vol 51 (32) ◽  
pp. 6948-6951 ◽  
Author(s):  
Yanfeng Zhang ◽  
Qian Yin ◽  
Jonathan Yen ◽  
Joanne Li ◽  
Hanze Ying ◽  
...  

Anin vitroandin vivodrug-reporting system is developed for real-time monitoring of drug release via the analysis of the concurrently released near-infrared fluorescence dye.


2021 ◽  
Author(s):  
Biswajit Roy ◽  
Rakesh Mengji ◽  
Samrat Roy ◽  
Bipul Pal ◽  
Avijit Jana ◽  
...  

In recent times, organelle-targeted drug delivery systems gained tremendous attention due to the site specific delivery of active drug molecules resulting in enhanced bioefficacy. In this context, the phototriggered drug delivery system (DDS) for releasing an active molecule is superior as it provides spatial and temporal control over the release. So far, near infrared (NIR) light responsive organelle targeted DDS has not yet been developed. Hence, we introduced a two-photon NIR-light responsive lysosome targeted ʽAIE + ESIPTʼ active single component DDS based on naphthalene chromophore. The Two-photon absorption cross-section of our DDS is 142 GM at 850 nm. The DDS was converted into pure organic nanoparticles for biological applications. Our nano-DDS is capable of selective targeting, AIE-luminogenic imaging, and drug release within the lysosome. In vitro studies using cancerous cell lines showed that our single component photoresponsive nanocarrier exhibited enhanced cytotoxicity and real-time monitoring ability of the drug release.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2810 ◽  
Author(s):  
Amir Javan-Khoshkholgh ◽  
Aydin Farajidavar

High-resolution (HR) mapping of the gastrointestinal (GI) bioelectrical activity is an emerging method to define the GI dysrhythmias such as gastroparesis and functional dyspepsia. Currently, there is no solution available to conduct HR mapping in long-term studies. We have developed an implantable 64-channel closed-loop near-field communication system for real-time monitoring of gastric electrical activity. The system is composed of an implantable unit (IU), a wearable unit (WU), and a stationary unit (SU) connected to a computer. Simultaneous data telemetry and power transfer between the IU and WU is carried out through a radio-frequency identification (RFID) link operating at 13.56 MHz. Data at the IU are encoded according to a self-clocking differential pulse position algorithm, and load shift keying modulated with only 6.25% duty cycle to be back scattered to the WU over the inductive path. The retrieved data at the WU are then either transmitted to the SU for real-time monitoring through an ISM-band RF transceiver or stored locally on a micro SD memory card. The measurement results demonstrated successful data communication at the rate of 125 kb/s when the distance between the IU and WU is less than 5 cm. The signals recorded in vitro at IU and received by SU were verified by a graphical user interface.


2008 ◽  
Vol 124 (4) ◽  
pp. 2485-2485
Author(s):  
Lucie Somaglino ◽  
Guillaume Bouchoux ◽  
Jean‐Louis Mestas ◽  
Adrien Matias ◽  
Jean‐Yves Chapelon ◽  
...  

2019 ◽  
Vol 4 (1) ◽  
pp. 1900204 ◽  
Author(s):  
Francesco Decataldo ◽  
Marianna Barbalinardo ◽  
Denis Gentili ◽  
Marta Tessarolo ◽  
Maria Calienni ◽  
...  

The Analyst ◽  
2019 ◽  
Vol 144 (6) ◽  
pp. 2150-2157 ◽  
Author(s):  
Feiyue Liu ◽  
Hui Dong ◽  
Yang Tian

As a reactive oxygen species (ROS), peroxynitrite (ONOO−) generated by nitric oxide (NO) and superoxide anion (O2˙−) plays important roles in physiological and pathological processes in the brain.


Sign in / Sign up

Export Citation Format

Share Document